A= 1^2 - 2^2 + 3^2 - 4^2 +... - 2024^2 + 2025^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3x-3\right)^2+\left(4y+2\right)^2=0\)
Ta có:
`(3x-3)^2>=0` với mọi x
`(4y+2)^2>=0` với mọi x
`=>(3x-3)^2+(4y+2)^2>=0` với mọi x,y
Mặt khác: `(3x-3)^2+(4y+2)^2=0`
Dấu "=" xảy ra: `3x-3=0` và `4y+2=0`
`=>3x=3` và `4y=-2`
`=>x=3/3=1` và `y=-2/4=-1/2`
Bài 5:
\(a,\dfrac{11}{24}-\dfrac{5}{41}+\dfrac{13}{24}+0,5-\dfrac{36}{41}\\ =\left(\dfrac{11}{24}+\dfrac{13}{24}\right)+\left(\dfrac{-5}{41}-\dfrac{36}{41}\right)+0,5\\ =\dfrac{24}{24}-\dfrac{41}{41}+\dfrac{1}{2}\\ =1-1+\dfrac{1}{2}\\=\dfrac{1}{2}\\ b,16\cdot\dfrac{3}{5}\cdot\dfrac{-1}{3}-13\dfrac{3}{5}\cdot\dfrac{-1}{3}\\ =\dfrac{-1}{3}\cdot\left(16+\dfrac{3}{5}-13-\dfrac{3}{5}\right)\\ =\dfrac{-1}{3}\cdot3\\ =-1\)
Bài 2:
\(\left(\dfrac{-4}{7}\right)^{25}:\left(\dfrac{-4}{7}\right)^{23}\\ =\left(\dfrac{-4}{7}\right)^{25-23}\\ =\left(\dfrac{-4}{7}\right)^2\\ =\dfrac{16}{49}\\ b,\dfrac{15}{60}+\dfrac{12}{19}+\dfrac{2}{9}-\dfrac{10}{8}+\dfrac{-31}{19}\\ =\dfrac{1}{4}+\left(\dfrac{12}{19}-\dfrac{31}{19}\right)+\dfrac{2}{9}-\dfrac{5}{4}\\ =\left(\dfrac{1}{4}-\dfrac{5}{4}\right)+\dfrac{-19}{19}+\dfrac{2}{9}\\ =-1-1+\dfrac{2}{9}\\ =\dfrac{2}{9}-2\\ =-\dfrac{16}{9}\)
Do n ϵ Z ⇒ A ϵ Z.
\(A=\dfrac{2\left(n-1\right)+5}{n-1}\)
\(A=2+\dfrac{5}{n-1}\)
\(\Rightarrow5⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1\right)\in\left\{1;-1;5;-5\right\}\)
Ta có bảng giá trị:
n - 1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
A | 7 | -3 | 3 | 1 |
⇒ Để A đạt GTNN thì A = -3 → n = 0
GTLN thì A = 7 → n = 2
`1,` Ta có:
`(4x^3-3x^2y^2+y^5)-(x^3+4x^2y^2+2y^5-5)`
`= 4x^3-3x^2y^2+y^5-x^3-4x^2y^2-2y^5 + 5`
`= (4x^3-x^3)+(-3x^2^2-4x^2y^2)+(y^5-2y^5)+5`
`= 3x^3 - 7x^2y^2 - y^5 + 5`
`2,` Ta có:
`x^2 - 2y^2 + 3z^2 - B = 3x^2 + 2y^2 - z^2`
$\Rightarrow $`(x^2-2y^2+3z^2)-B = 3x^2+2y^2-z^2`
$\Rightarrow $`B = x^2-2y^2+3z^2 - (3x^2 + 2y^2-z^2)`
$\Rightarrow $`B= x^2-2y^2+3z^2-3x^2-2y^2+z^2`
$\Rightarrow $` B = (x^2-3x^2)+(-2y^2-2y^2)+(3z^2+z^2)`
$\Rightarrow $`B = -2x^2-4y^2+4z^2`
$\Rightarrow $ `B`
`(2x + 1)^2 = 1/4`
`=> (2x+1)^2 = (1/2)^2`
`=> 2x + 1 = 1/2` hoặc `2x + 1 = -1/2`
`=> 2x = 1/2 - 1` hoặc `2x = -1/2 - 1`
`=> 2x = -1/2` hoặc `2x = -3/2`
`=> x = -1/2 : 2` hoặc `x = -3/2 : 2`
`=> x = -1/2 .1/2` hoặc `x = -3/2 . 1/2`
`=> x = -1/4` hoặc `x = -3/4`
Vậy ...
TH1: \(\left(2x+1\right)^2\)\(=\left(\dfrac{1}{2}\right)^2\) TH2: \(\left(2x+1\right)^2=\left(\dfrac{-1}{2}\right)^2\)
Suy ra: \(2x+1=\dfrac{1}{2}\) Suy ra: \(2x+1=\dfrac{-1}{2}\)
\(2x=\dfrac{1}{2}-1\) \(2x=\dfrac{-1}{2}-1\)
\(2x=\dfrac{-1}{2}\) \(2x=\dfrac{-3}{2}\)
\(x=\dfrac{-1}{2}:2\) \(x=\dfrac{-3}{2}:2\)
\(x=\dfrac{-1}{2}\cdot\dfrac{1}{2}\) \(x=\dfrac{-3}{2}\cdot\dfrac{1}{2}\)
\(x=\dfrac{-1}{4}\) \(x=\dfrac{-3}{4}\)
Vậy \(x\in\left\{\dfrac{-3}{4}|\dfrac{-1}{4}\right\}\)
\(\dfrac{x+23}{2021}+\dfrac{x+22}{2022}-\dfrac{x+21}{2023}-\dfrac{x+20}{2024}=0\)
=>\(\left(\dfrac{x+23}{2021}+1\right)+\left(\dfrac{x+22}{2022}+1\right)-\left(\dfrac{x+21}{2023}+1\right)-\left(\dfrac{x+20}{2024}+1\right)=0\)
=>\(\dfrac{x+2044}{2021}+\dfrac{x+2044}{2022}-\dfrac{x+2044}{2023}-\dfrac{x+2044}{2024}=0\)
=>x+2044=0
=>x=-2044
`(x+23)/2021 + (x+22)/2022 - (x+21)/(2023) - (x+20)/2024 = 0`
`=> (x+23)/2021 + 1+ (x+22)/2022 +1 - (x+21)/(2023) - 1 - (x+20)/2024 - 1= 0`
`=> ((x+23)/2021 + 1)+ ((x+22)/2022 +1) - ((x+21)/(2023) + 1) - ((x+20)/2024 + 1)= 0`
`=> (x+23+2021)/2021 + (x+22+2022)/2022 - (x+21+2023)/(2023) - (x+20+2024)/2024 = 0`
`=> (x+2044)/2021 + (x+2044)/2022 -(x+2044)/(2023) - (x+2044)/2024 = 0`
`=> (x+2044) . (1/2021 + 1/2022 - 1/2023 - 1/2024) = 0`
`=> x + 2044 = 0`
`=> x = -2044`
Vậy `x = -2044`
\(A=1^2-2^2+3^2-4^2+...+2023^2-2024^2+2025^2\\ =\left(1+2\right)\left(1-2\right)+\left(3+4\right)\left(3-4\right)+\left(2023-2024\right)\left(2023+2024\right)\\ =-3-7-11-...-4047+2025^2\\ =-\left(3+7+11+..+4047\right)+2025^2\)
Xét tổng: `3+7+11+...+4047`
Số lượng số hạng: `(4047-3):4+1=1012`
Tổng: `(4047+3)*1012/2=2049300`
`=>A=-2049300+2025^2`
`=>A=-2049300+4100625`
`=>A=2051325`