K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^2-2⋮xy+2\)<=> \(y\left(x^2-2\right)⋮xy+2\)

<=> x(xy+2)-2y-2x\(⋮\)xy +2

<=> 2(x+y)\(⋮\)xy+2

=> 2(x+y)\(\ge\)xy+2

=> y(2-x)\(\ge\)2-2x

Xét x=1 rồi tìm y 

Xét x=2 => KTM

Xét x≥2 ta có \(y\le\frac{2x-2}{x-2}=\frac{2\left(x-2\right)+2}{x-2}=2+\frac{2}{x-2}\le4\)=>\(1\le y\le4\)

Xét các trường hợp của y để tìm x

Hơi nhiều trường hợp nhỉ =))

2 tháng 12 2021

1)1) Do xyxy bình đẳng nên có thể giả sử xx ≤≤ yy

Từ x+y+1⋮xyx+y+1⋮xy và x+y+1,xy∈Nx+y+1,xy∈N

⇒x+y+1≥xy⇒x+y+1≥xy

⇔xy−x−y≤1⇔xy-x-y≤1

⇔xy−x−y+1≤2⇔xy-x-y+1≤2

⇔x(y−1)−(y−1)≤2⇔x(y-1)-(y-1)≤2

⇔(x−1)(y−1)≤2      (1)⇔(x-1)(y-1)≤2      (1)

Nên x≥3⇒y≥3⇒x−1≥2;y−1≥2x≥3⇒y≥3⇒x-1≥2;y-1≥2

                   ⇒(x−1)(y−1)≥4(mt)⇒(x-1)(y-1)≥4(mt)

Vậy x<3x<3, mà x∈N⋅⇒x∈{1;2}x∈N⋅⇒x∈{1;2}

+)x=1⇒y+2⋮y⇔2⋮y⇒+)x=1⇒y+2⋮y⇔2⋮y⇒ [y=1y=2[y=1y=2

+)x=2⇒y+3⋮2y⇒y+3⋮y+)x=2⇒y+3⋮2y⇒y+3⋮y

                                           ⇔3⋮y⇒y≥2⇒y=3⇔3⋮y⇒y≥2⇒y=3(t/m)(t/m)

Vậy (x;y)∈{(1;1);(1;2);(2;1);(2;3);(3;2)}(x;y)∈{(1;1);(1;2);(2;1);(2;3);(3;2)}

2)2x+y−1⋮xy (1)2)2x+y-1⋮xy (1)

Do x,yx,y là số nguyên dương ⇒2x+y−1,xy∈N⋅⇒2x+y-1,xy∈N⋅

Từ (1)⇒2x+y−1≥xy(1)⇒2x+y-1≥xy

         ⇔xy−2xy≤−1⇔xy-2xy≤-1

         ⇔x(y−2)+y+2≤1⇔x(y-2)+y+2≤1

         ⇔x(y−2)−(y−2)≤1⇔x(y-2)-(y-2)≤1

         ⇔(x−1)(y−2)≤1 (2)⇔(x-1)(y-2)≤1 (2)

+)+) Xét x=1⇒2+y−1⋮yx=1⇒2+y-1⋮y

                    ⇔y+1⋮y⇔1⋮y⇒y=1⇔y+1⋮y⇔1⋮y⇒y=1

+)+) Xét x=2⇒y+3⋮2yx=2⇒y+3⋮2y

                      ⇒y+3⋮y⇔3⋮y⇒y+3⋮y⇔3⋮y

                      ⇒⇒ [y=1(t/m)y=3(t/m)[y=1(t/m)y=3(t/m)

+)+) Xét x≥3⇒x−1≥2x≥3⇒x-1≥2

         Nếu y≥3⇒y−2≥1y≥3⇒y-2≥1

                           ⇒(x−1)(y−2)≥2⇒(x-1)(y-2)≥2 mt với (2)(2)

Suy ra y<3=>y=1y<3=>y=1 hay y=2y=2

+)y=1+)y=1 ta có:

                       2x⋮x2x⋮x luôn đúng

+)y=2⇒2x+1⋮2+)y=2⇒2x+1⋮2

            ⇔1⋮2x⇒1≥2x⇔1⋮2x⇒1≥2x Vô lý

Vậy (x,y)∈{(1;1);(2;3),xy∈N⋅}

3 tháng 6 2019

Bài này dùng cô si điểm rơi

Mình đoán là x=1 y=1/2

Có A=(2x^2+2/x+2/x)+(16y^2+2/y+2/y)-2/x-1/y

áp dụng cô si 3 số vào 2 cái ngoặc đầu rồi tính ra(*)

còn -2/x-1/y=-(2/x+1/y)=-(2/x+2/2y)

áp dụng bđt svac vào 2/x+2/2y>=8/x+2y

mà x+2y>=2

nên -2/x-1/y>=-4(**)

tóm laị A>=14

dấu bằng xảy ra khi x=1 y=1/2

Chúc bạn học tốt!

4 tháng 6 2019

Ta có \(\frac{1}{abc}=a+b+c\)

<=> \(a\left(a+b+c\right)=\frac{1}{bc}\)

\(P=\left(a+b\right)\left(a+c\right)\)

  \(=a\left(a+b+c\right)+bc\)

  \(=\frac{1}{bc}+bc\ge2\)

Dấu bằng xảy ra khi \(bc=1\)và a thỏa mãn \(a+b+\frac{1}{b}=\frac{1}{a}\)

Gọi năng xuất làm việc trong 1 ngày của đội 1 và đội 2 lần lượt là:x và y(công việc/ngày).

2 đội công nhân cùng làm chung 1 công việc thì sau 15 ngày

\(\Rightarrow15\times y+15\times y=1\left(1\right)\)

Đội 1 làm riêng trong 3 ngày rồi dừng lại và đội 2 làm tiếp công việc đó trong 5 ngày thì cả 2 đội hoàn thành 25% công việc(ở đây mk đổi luôn)

\(\Rightarrow3\times x+5\times y=\frac{1}{4}\)

\(\Rightarrow5\times\left(3\times x+5\times y\right)=5\times\frac{1}{4}\)

\(15\times x+25\times y=\frac{5}{4}\left(2\right)\)

Lấy (2) trừ đi (1) ta được:

\(\left(15\times x+25\times y\right)-\left(15\times x+15\times y\right)=\frac{5}{4}-1\)

\(10\times y=\frac{1}{4}\)

\(y=\frac{1}{4}:10\)

\(\Rightarrow y=\frac{1}{40}\)

\(\Rightarrow x=\frac{1}{24}\)

Vậy .................

Chúc bạn học tốt

3 tháng 6 2019

\(\sqrt{6x^2+1}=\sqrt{2x-3}+x^2\) \(\left(x\ge\frac{3}{2}\right)\)

<=> \(\sqrt{6x^2+1}-5=\sqrt{2x-3}-1+x^2-4\)

<=> \(\frac{6x^2+1-25}{\sqrt{6x^2+1}+5}=\frac{2x-3-1}{\sqrt{2x-3}+1}+\left(x-2\right)\left(x+2\right)\)

<=> \(\frac{6\left(x^2-4\right)}{\sqrt{6x^2+1}+5}-\frac{2\left(x-2\right)}{\sqrt{2x-3}+1}-\left(x-2\right)\left(x+2\right)=0\)

<=> \(\left(x-2\right)\left\{\frac{6\left(x+2\right)}{\sqrt{6x^2+1}+5}-2-x-2\right\}=0\)

<=> \(x=2\left(tm\right)\)hoặc \(\frac{6\left(x+2\right)}{\sqrt{6x^2+1}+5}-x-4=0\left(1\right)\)

\(giải\left(1\right)có\)

\(6x+12=\left(x+4\right)\left(\sqrt{6x^2+1}+5\right)\)

<=> \(6x+12=x\sqrt{6x^2+1}+5x+4\sqrt{6x^2+1}+20\)

<=> \(x-8=x\sqrt{6x^2+1}+4\sqrt{6x^2+1}\left(x\ge8\right)\)

<=> \(x^2-16x+64=6x^4+x^2+96x^2+16+8x\sqrt{\left(6x^2+1\right)^2}\)

bn giải nốt nhá

3 tháng 6 2019

Có \(\sqrt{\frac{x}{\sqrt[]{3x+yz}}}=\sqrt[]{\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}}\)

Làm tương tự với 2 cái còn lại

Ta sẽ dùng bđt cô si mở rộng: (a+b+c)^2<=3(a^2+b^2+c^2)

Đặt A là biểu thức để bài cho

Có A^2<=\(3\left(\frac{x}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}+\frac{y}{\sqrt[]{\left(y+x\right)\left(y+z\right)}}+\frac{z}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\right)\)

Ta có \(\frac{1}{\sqrt{\left(x+y\right)\left(x+z\right)}}< =\frac{1}{2}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\)

nên \(\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}< =\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)

làm tương tự với 2 ngoặc còn lại ta sẽ thấy A^2<=\(\frac{9}{2}\)

hay A<=\(\frac{3}{\sqrt{2}}\)

dấu bằng xảy ra khi x=y=z=1

Chúc bạn học tốt!

3 tháng 6 2019

\(a,\)\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Rightarrow2a^2+2b^2\ge a^2+2ab+b^2\)

\(\Rightarrow a^2+b^2\ge2ab\)

\(\Rightarrow a^2-2ab+b^2\ge0\)

\(\Rightarrow\left(a-b\right)^2\ge0\) ( luôn đúng )

\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

3 tháng 6 2019

a) \(A=2x+\sqrt{x^2-2x+1}=2x+\sqrt{\left(x-1\right)^2}=2x+\left|x-1\right|\)

với x \(\ge\)1 thì A = 2x + x - 1 = 3x - 1

với x < 1 thì A = 2x + 1 - x = x + 1

b) A = \(2x+\left|x-1\right|=1\)

TH1 : x \(\ge\)1 thì A = 3x - 1 = 1 \(\Rightarrow\)x = \(\frac{2}{3}\)( ko t/m )

TH2 : x < 1 thì A = x + 1 = 1 \(\Rightarrow\)x = 0 ( t/m )

vậy x = 0

3 tháng 6 2019

\(A=2x+\sqrt{x^2-2x+1}=2x+\sqrt{\left(x-1\right)^2}=2x+|x-1|\)

Để A=1 thì  \(2x+|x-1|=1\)\(\left(1\right)\)

Với  \(x\ge1\)thì  (1)   trở thành   \(2x+x-1=1\Leftrightarrow3x=2\Leftrightarrow x=\frac{2}{3}\)(loại)

Với  \(x< 1\)thì  (1)  trở thành   \(2x-x+1=1\Leftrightarrow x=0\)(chọn)

Vậy   \(S=0\)

3 tháng 6 2019

P=1/(x+y)(x^2-xy+y^2)+1/xy

P=1/(x^2-xy+y^2)+1/xy ( vĩ+y=1)

P=1/(x^2-xy+y^2)+3/xy

Đến đây áp dụng bất đẳng thức Svac có

P>=(√3+1)^2/(x+y)^2

P>=(√3+1)^2 (vì x+y=1)

hay P>=4+2√3(đpcm)

3 tháng 6 2019

Ta có : \(8^x+8^x+8^2\ge3\sqrt[3]{8^x.8^x.8^2}=12.4^x\)

\(8^y+8^y+8^2\ge3\sqrt[3]{8^y.8^y.8^2}=12.4^y\)

\(8^z+8^z+8^2\ge3\sqrt[3]{8^z.8^z.8^2}=12.4^z\)

\(8^x+8^y+8^z\ge3\sqrt[3]{8^x.8^y.8^z}=3\sqrt[3]{8^6}=192\)

Cộng các vế , ta được :

\(3\left(8^x+8^y+8^z+64\right)\ge3\left(4^{x+1}+4^{y+1}+4^{z+1}+64\right)\)

hay \(8^x+8^y+8^z\ge4^{x+1}+4^{y+1}+4^{z+1}\)