Rút gọn biểu thức: \(M=\left(\frac{1}{2}-\frac{1}{2x}\right)\left(\frac{x-\sqrt{x}}{\sqrt{x}+1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta^`\ge0\)
\(\Leftrightarrow m^2-\left(m^2-2\right).2\ge0\)
\(\Leftrightarrow4-m^2\ge0\)
\(\Leftrightarrow4\ge m^2\)
\(\Leftrightarrow4\ge m^2\)
\(\Leftrightarrow-2\le m\le2\)
Theo hệ thức Viet có:
\(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=\frac{m^2-2}{2}\end{cases}}\)
\(\Rightarrow A=\left|2x_1.x_2-x_1-x_2-4\right|=\left|m^2-m-6\right|=\left|\left(m-\frac{1}{2}\right)^2-6,25\right|\)
Có:
\(\left(m-\frac{1}{2}\right)^2\le\left(-2-\frac{1}{2}\right)^2=6,25\)
\(\Rightarrow A=\left|\left(m-\frac{1}{2}\right)^2-6,25\right|=6,25-\left(m-\frac{1}{2}\right)^2\le6,25\)
\(A=6,25\Leftrightarrow m=\frac{1}{2}\left(tm\right)\)
KL:..............................................
a) Xét đường tròn (O): Tiếp tuyến KA, cắt tuyến KBC => KA2 = KB.KC (Hệ thức lượng đường tròn) (đpcm).
Ta có ^BAC nội tiếp (O), AM là phân giác ^BAC, M thuộc (O) nên M là điểm chính giữa cùng BC không chứa A
Do đó OM vuông góc BC. Mà AH vuông góc BC nên AH // OM => ^HAM = ^OMA = ^OAM
Suy ra AM là phân giác của ^OAH (đpcm).
b) M là điểm chính giữa cung BC của (O) nên BM = CM
Do MO cắt (O) tại N khác M nên O là trung điểm MN và MN là đường kính của (O)
Khi đó ^NCM = 900 hay CM vuông góc CN. Mà OE vuông góc NC nên OE // CM
Từ đó OE là đường trung bình của \(\Delta\)MNC => OE = CM/2. Hay OE = BM/2 (đpcm).
c) Có A,K,O là các điểm cố định => Độ dài các đoạn KA,OK,OA không đổi
Theo tính chất góc tạo bởi tiếp tuyến và dây => ^KAB = ^ACB. Ta có biến đổi góc:
^KIA = ^IAC + ^ICA = ^IAB + ^ACB = ^IAB + ^KAB = ^KAI => \(\Delta\)AKI cân tại K => KI = KA
Mà độ dài KA không đổi (cmt) nên độ dài KI cũng không đổi. Đồng thời có đường tròn (K,KA) cố định.
Do vậy I nằm trên đường tròn (K,KA) cố định. Hay I di động trên (K,KA) cố định khi cát tuyến KBC quay quanh K.
chủ yếu là hỏi câu c hả? tớ làm mỗi đoạn đưa về tổng - tích thôi, bạn giải thấy khó chỗ nào thì hỏi cụ thể nhe ^^
\(\left(x_1+2x_2\right)\left(x_2+2x_1\right)=x_1x_2+2x_2^2+2x_1^2+4x_1x_2=2\left(x_1+x_2\right)^2-4x_1x_2+5x_1x_2\)
đến đây Vi-ét đc òi
Gotcha Tokoyami
Có \(\Delta=\left(m-2\right)^2-4\left(-m^2+3m-4\right)\)
\(=m^2-4m+4+4m^2-12m+16\)
\(=5m^2-16m+20\)
\(=5\left(m^2-\frac{16}{5}m+4\right)\)
\(=5\left[\left(m^2-2.\frac{8}{5}m+\frac{64}{25}\right)+\frac{36}{25}\right]\)
\(=5\left[\left(m-\frac{8}{5}\right)^2+\frac{36}{25}\right]>0\forall m\)
Nên pt có 2 nghiệm phân biệt với mọi m
a, Với m = 0 thì pt trở thành
\(x^2+2x-4=0\)
Có \(\Delta'=1+4=5>0\)
\(\Rightarrow\orbr{\begin{cases}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{cases}}\)
b, Theo hệ thức Vi-et \(x_1x_2=-m^2+3m-4=-\left(m-\frac{3}{2}\right)^2-\frac{7}{4}< 0\)
nên pt có 2 nghiệm trái dấu
c, Thiếu đề , nhưng làm hộ 1 bước biến đổi như bạn dưới
ĐK:x>1
M=\(\frac{x-1}{2x}\) .\(\frac{\left(x-\sqrt{x}\right)\left(\sqrt{x}-1\right)-\left(x+\sqrt{x}\right)\left(\sqrt{x}+1\right)}{x-1}\)
=\(\frac{x-1}{2x}\).\(\frac{x\sqrt{x}-x-x+\sqrt{x}-x\sqrt{x}-x-x-\sqrt{x}}{x-1}\)=\(\frac{x-1}{2x}\).\(\frac{-4x}{x-1}\)=-2
Vậy M=-2