K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2019

Câu hỏi của Nguyễn Phương Nga - Toán lớp 9 - Học toán với OnlineMath

tham khảo 

4 tháng 6 2019

đây nè : https://olm.vn/hoi-dap/detail/78520355814.html

4 tháng 6 2019

Ta có \(P=\frac{\left(x+y\right)^2+3xy}{\sqrt{xy}\left(x+y\right)}\)

             \(=\frac{x+y}{\sqrt{xy}}+\frac{3\sqrt{xy}}{x+y}=\frac{3}{4}\frac{x+y}{\sqrt{xy}}+\frac{3\sqrt{xy}}{x+y}+\frac{1}{4}.\frac{x+y}{\sqrt{xy}}\ge3+\frac{1}{4}.2=\frac{7}{2}\)

Vậy MinP=7/2 khi x=y

4 tháng 6 2019

#)Giải :

a)      A = √(3+√5)-√(3-√5)-√2 

<=>A√2=√(6+2√5)-√(6-2√5)-2

<=>A√2=√(√5+1)^2-√(√5-1)-2

<=>A√2=√5+1-√5+1-2

<=>A√2=0

<=>A=0

=>√(3+√5)-√(3-√5)-√2 =0

b)       B=√(4-√7)-√ (4+√7)+√7

<=>B√2=√(8-2√7)-√(8+2√7)+2√7

<=>B√2=√(√7-1)^2-√(√7+1)^2+2√7

<=>B√2=√7-1-√7-1+2√7

<=>B√2=2√7-2

<=>B=(2√7-2)/√2

=√14-√2

                      #~Will~be~Pens~3

4 tháng 6 2019

Câu a) hình như sai đề đúng không bạn ?

b) \(B=\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{7}\)

Xét \(\left(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\right)^2\)

\(=4-\sqrt{7}-2\sqrt{\left(4-\sqrt{7}\right)\left(4+\sqrt{7}\right)}+4+\sqrt{7}\)

\(=8-2\sqrt{16-7}\)

\(=8-2\cdot3\)

\(=2\)

\(\Rightarrow\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}=-\sqrt{2}\)( vì \(\sqrt{4-\sqrt{7}}< \sqrt{4+\sqrt{7}}\))

Khi đó : \(B=-\sqrt{2}+\sqrt{7}\)

Góp ý nhẹ với bạn ๖²⁴ʱŤ.Ƥεɳɠʉїɳş༉ ( Team TST 14 ) là không biết thì đừng làm nhé 

4 tháng 6 2019

Ta có: \(a=\sqrt{\frac{3}{5}}+\sqrt{\frac{5}{3}}=\frac{\sqrt{3}}{\sqrt{5}}+\frac{\sqrt{5}}{\sqrt{3}}=\frac{8\sqrt{15}}{15}\)

=> \(a^2=\frac{64}{15}\)

=> \(M=\sqrt{15a^2-8a\sqrt{15}+16}=\sqrt{15.\frac{64}{15}-8.\frac{8\sqrt{15}}{15}.\sqrt{15}+16}\)

\(M=\sqrt{64-64+16}=4\)

4 tháng 6 2019

a)\(\left(\sqrt{12}+\sqrt{75}+\sqrt{27}\right):\sqrt{15}\)

\(=\left(2\sqrt{3}+5\sqrt{3}+3\sqrt{3}\right):\sqrt{15}\)

\(=10\sqrt{3}:\sqrt{15}=\sqrt{300}:\sqrt{15}=\sqrt{20}=2\sqrt{5}\)

b) \(\frac{12\sqrt{50}-8\sqrt{200}+7\sqrt{450}}{\sqrt{10}}\)

\(=\frac{60\sqrt{2}-80\sqrt{2}+105\sqrt{2}}{\sqrt{10}}\)

\(=\frac{85\sqrt{2}}{10}=\frac{17\sqrt{2}}{2}\)

c)\(\frac{\sqrt{\frac{1}{7}}-\sqrt{\frac{16}{7}}+\sqrt{\frac{9}{7}}}{7}=\frac{\frac{1}{\sqrt{7}}-\frac{4}{\sqrt{7}}+\frac{3}{\sqrt{7}}}{7}=\frac{0}{7}=0\)

4 tháng 6 2019

Áp dụng BĐT Cauchy-Schwarz Engel, ta được:

T\(\ge\)\(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\)+x+y+z+\(\sqrt{xy}\)+\(\sqrt{yz}\)+\(\sqrt{zx}\)-(x+y+z+\(\sqrt{xy}\)+\(\sqrt{yz}\)+\(\sqrt{zx}\))

Áp dụng BĐT AM-GM , ta được:

T\(\ge\)2(x+y+z)-x-y-z-\(\frac{x+y+z}{2}\)=\(\frac{x+y+z}{2}\)\(\ge\)\(\frac{2019}{2}\)

Vậy: GTNN của A=\(\frac{2019}{2}\)khi x=y=z=673

4 tháng 6 2019

\(T>=\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}\)(bunhiacopxki dạng phân thức)

=>\(T>=\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}}\)

=>\(T>=\frac{2\left(x+y+z\right)^2}{4\left(x+yz\right)}=\frac{x+y+z}{2}=\frac{2019}{2}\)

xảy ra dấu= khi và chỉ khi \(x=y=z=\frac{2019}{3}\)

4 tháng 6 2019

bt xác định \(\Leftrightarrow\sqrt{x-1}-2\ne0\)

\(\Leftrightarrow\sqrt{x-1}\ne2\)

\(\Leftrightarrow x-1\ne4\Leftrightarrow x\ne5\)

4 tháng 6 2019

Bạn Đào Trọng Luân thiếu ĐK căn lớn hơn bằng 0

\(ĐKXĐ\hept{\begin{cases}x-1\ge0\\\sqrt{x-1}\ne2\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge1\\x-1\ne4\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ne5\end{cases}}}\)

Nhấn phím    \(S\Leftrightarrow D\)

4 tháng 6 2019

làm sao chuyển đc bạn