Cho biết các chất sau đây:
a, Nước do nguyên tố oxi và nguyên tố hiđro tạo nên;
b, Axit sunfuric do nguyên tố hiđro, nguyên tố lưu huỳnh và nguyên tố oxi cấu tạo nên;
c, Khí ozon do nguyên tố oxi tạo nên;
d, Khí cacbonic do nguyên tố oxi và nguyên tố cacbon cấu tạo nên;
e, Đá vôi do nguyên tố cacbon, nguyên tố canxi và nguyên tố oxi cấu tạo nên. Hỏi nguyên tố
oxi tồn tại ở dạng đơn chất trong những chất nào:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x =7
=>x+1=8
\(\Rightarrow\)\(A=x^{15}-8x^{14}+8x^{13}-8x^{12}+.......8x^2+8x-5\)
\(\Rightarrow x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...\left(x+1\right)x^2\)
\(+\left(x+1\right)x^5\)
\(\Rightarrow x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...-x^3-x^2+x-5\)
\(\Rightarrow x-5\Leftrightarrow A=7-5=2\Rightarrow A=2\)
Vậy A=2 khi x=7
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc ACB chung
Do dó ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD/CE=CA/CB
=>ΔCDA đồng dạng với ΔCEB
=>EB/DA=BC/AC
mà BC/AC=AC/CH
nên EB/DA=AC/CH=BA/HA
=>BE/AD=BA/HA
=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)
\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)
b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2
nên góc AEB=45 độ
=>ΔABE vuông cân tại A
=>AM vuông góc với BE
BM*BE=BA^2
BH*BC=BA^2
Do đó: BM*BE=BH/BC
=>BM/BC=BH/BE
=>ΔBMH đồng dạng với ΔBCE
\(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}-\frac{2x}{\left(x+1\right)\left(x+3\right)}=0\)
\(\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{x\left(x-3\right)}{2\left(x-3\right)\left(x+1\right)}-\frac{2.2x}{2\left(x-3\right)\left(x+1\right)}=0\)
\(\frac{x^2+x}{2\left(x-3\right)\left(x+1\right)}+\frac{x^2-3x}{2\left(x-3\right)\left(x+1\right)}-\frac{4x}{2\left(x-3\right)\left(x+1\right)}=0\)
\(\frac{x^2+x+x^2-3x-4x}{2\left(x-3\right)\left(x+1\right)}=0\)
\(\frac{2x^2-6x}{2\left(x-3\right)\left(x+1\right)}=0\)
=>\(2x^2-6x=0\)
\(2x\left(x-3\right)=0\)
=>\(x=0\)
\(x=3\)