K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2019

Ta có:

\(\sqrt{x^2-x+19}+\sqrt{7x^2+8x+13}+\sqrt{13x^2+17x+7}\)

\(=\sqrt{\frac{1}{4}\left(2x-1\right)^2+\frac{75}{4}}+\sqrt{\left(2x-1\right)^2+3\left(x+2\right)^2}+\sqrt{\frac{1}{4}\left(2x-1\right)^2+\frac{3}{4}\left(4x+3\right)^2}\)

\(\ge\sqrt{\frac{75}{4}}+\sqrt{3\left(x+2\right)^2}+\sqrt{\frac{3}{4}\left(4x+3\right)^2}\)

\(=\frac{5\sqrt{3}}{2}+\sqrt{3}\left(x+2\right)+\frac{\sqrt{3}\left(4x+3\right)}{2}=3\sqrt{3}\left(x+2\right)\)

Dấu = xảy ra khi ....

14 tháng 6 2019

Sửa đề:
\(\sqrt[3]{3x^2-x+2012}-\sqrt[3]{3x^2-6x+2013}-\sqrt[5]{5x-2014}=\sqrt[3]{2013}\)

Đặt \(\sqrt[3]{3x^2-x+2012}=a;\sqrt[3]{3x^2-6x+2013}=b;\sqrt[5]{5x-2014}=c\)

\(\Rightarrow a-b-c=\sqrt[3]{2013}\)

Ta lại có:

\(a^3-b^3-c^3=2013=\left(a-b-c\right)^3\)

\(\Leftrightarrow\left(a-b\right)\left(a-c\right)\left(b+c\right)=0\)

Làm nốt

13 tháng 6 2019

Đặt \(2x+1=a,3x=b\)

=> \(a^2=4x^2+4x+1,b^2=9x^2\)

Khi đó 

PT <=> \(a\left(2+\sqrt{a^2+3}\right)+b\left(2+\sqrt{b^2+3}\right)=0\)

<=> \(2\left(a+b\right)+\left(a\sqrt{a^2+3}+b\sqrt{b^2+3}\right)=0\)

<=> \(2\left(a+b\right)+\frac{a^2\left(a^2+3\right)-b^2\left(b^2+3\right)}{a\sqrt{a^2+3}-b\sqrt{b^2+3}}=0\)

<=> \(2\left(a+b\right)+\frac{\left(a+b\right)\left(a-b\right)\left(a^2+b^2+3\right)}{a\sqrt{a^2+3}-b\sqrt{b^2+3}}=0\)

\(\orbr{\begin{cases}a+b=0\\2+\frac{\left(a-b\right)\left(a^2+b^2+3\right)}{a\sqrt{a^2+3}-b\sqrt{b^2+3}}=0\left(2\right)\end{cases}}\)

Phương trình (2) vô nghiêm vì \(\frac{a-b}{a\sqrt{a^2+3}-b\sqrt{b^2+3}}\ge0\)do a>b thì tử >0, mẫu >0   và ngược lại a<b

=> \(2x+1+3x=0\)

=> \(x=-\frac{1}{5}\)

Vậy \(x=-\frac{1}{5}\)

13 tháng 6 2019

Câu hỏi của Diệp Song Thiên - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo link này nhé!

8 tháng 4 2020

\(\frac{2x}{\sqrt{1-\frac{\left(x+1\right)^2}{\left(x-1\right)^2}}}+\sqrt{2x^2+1+x^4}\)

\(=\frac{2x}{\sqrt{\frac{\left(x-1\right)^2-\left(x+1\right)^2}{\left(x-1\right)^2}}}+\sqrt{\left(x^2+1\right)^2}\)

\(=\frac{2x}{\frac{\sqrt{x^2-2x+1-x^2-2x-1}}{x-1}}+x^2+1\)

\(=\frac{2x}{\frac{\sqrt{4x}}{x-1}}+x^2+1\)

\(=\frac{2x}{\frac{2\sqrt{x}}{x-1}}+x^2+1\)

\(=\sqrt{x}\left(x-1\right)+x^2+1\)

\(=x\sqrt{x}-\sqrt{x}+x^2+1\)

\(=x^2+x\sqrt{x}-\sqrt{x}+1\)

13 tháng 6 2019

ĐK: \(-1\le x\le1\)

\(A^2=1+x+1-x+2\sqrt{1-x^2}=2+2\sqrt{1-x^2}\ge2\)

=> \(A\ge\sqrt{2}\)

Dấu "=" xảy ra <=> \(1-x^2=0\Leftrightarrow x=\pm1\)

Kết luận :...

\(a,\sqrt{9x^2-6x+1}=\sqrt{\left(3x-1\right)^2}=3x-1\)

\(b,\sqrt{\left(x-2\right)^2}+\frac{\sqrt{x^2}-4x+4}{x-2}\)

\(=x-2+\frac{x-4x+4}{x-2}=x-2+\frac{4-3x}{x-2}\)

13 tháng 6 2019

a, Để biểu thức trên có nghĩa :

\(1-4x\ge0\Rightarrow x\le\frac{1}{4}\)

b, Để biểu thức trên có nghĩa :

\(3-4x\ne0\)           Vì \((2x^2+1)>0,\forall x\inℝ\)

\(\Leftrightarrow x\ne\frac{3}{4}\)

c, Để biểu thức trên có nghĩa :

\(\hept{\begin{cases}\frac{-3}{2x-2}\ge0\\2x-2\ne0\end{cases}}\Rightarrow2x-2< 0\Rightarrow x< 1\)

d, Tương tự

12 tháng 6 2019

\(a,\)\(2-\sqrt{1-4x}\)

\(đkxđ\Leftrightarrow\sqrt{1-4x}\ge0\)

\(\Rightarrow1-4x\ge0\)\(\Rightarrow x\le\frac{1}{4}\)

\(b,\)\(\sqrt{2x+1}+\frac{2}{3-4x}\)

\(đkxđ:\orbr{\begin{cases}2x+1\ge0\\3-4x\ne0\end{cases}\Rightarrow\orbr{\begin{cases}x\ge-\frac{1}{2}\\x\ne\frac{3}{4}\end{cases}}}\)

12 tháng 6 2019

\(c,\)\(\sqrt{\frac{-3}{2x-2}}\)

\(đkxđ:\hept{\begin{cases}\frac{-3}{2\left(x-1\right)}\ge0\\x\ne1\end{cases}}\)

\(\frac{-3}{2\left(x-1\right)}>0\Leftrightarrow2\left(x-1\right)>0\)

\(\Rightarrow x-1>0\Rightarrow x>1\)

\(d,\)\(\frac{1}{4x+2}+\sqrt{1+3x}\)

\(đkxđ:\hept{\begin{cases}2\left(x+1\right)\ne0\\1+3x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x+1\ne0\\3x\ge-1\end{cases}\Rightarrow}\hept{\begin{cases}x\ne-1\\x\ge\frac{-1}{3}\end{cases}}}\)

À câu b sửa cho mình ngoặc vuông thành ngoặc móc giùm mình nha. Mình nhầm xíu :>

14 tháng 6 2019

a, Biểu thức \(2-\sqrt{1-4x}\) có nghĩa : \(1-4x\ge0\Rightarrow x\le\frac{1}{4}\)

\(b,\sqrt{2x^2+1}+\frac{2}{3-4x}\)

\(\Rightarrow\hept{\begin{cases}2x^2+1>0\\3-4x\ne0\end{cases}}\Rightarrow\hept{\begin{cases}2x^2>-1\\4x\ne3\end{cases}}\Rightarrow\hept{\begin{cases}x^2>-\frac{1}{2}\\x\ne\frac{3}{4}\end{cases}}\Rightarrow x\ne\frac{3}{4}\)

\(c,\sqrt{\frac{-3}{2x-2}}\) \(\Rightarrow\hept{\begin{cases}\frac{-3}{2x-2}\ge0\\2x-2\ne0\end{cases}}\Rightarrow2x-2< 0\Rightarrow x< 1\)

d, TT