K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2019

bài lớp mấy mà khó dữ

Ta có : \(xy+yz+zx=1\)

\(\Rightarrow\hept{\begin{cases}1+x^2=xy+yz+zx+x^2=\left(x+y\right)\left(x+z\right)\\1+y^2=xy+yz+zx+y^2=\left(y+x\right)\left(y+z\right)\\1+z^2=xy+yz+zx+z^2=\left(z+x\right)\left(z+y\right)\end{cases}}\)

Do đó :

\(\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}=\sqrt{\frac{\left(y+x\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(x+y\right)\left(x+z\right)}}=\sqrt{\left(y+z\right)^2}\)\(=y+z\)

\(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}=x\left(y+z\right)\)

Hoàn toàn tương tự :

\(y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}=y\left(z+x\right)\)

\(z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}=z\left(x+y\right)\)

Do đó :

\(A=x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)\)

\(=2\left(xy+yz+zx\right)=2\)

14 tháng 6 2019

\(A+\frac{1}{4}=x+\frac{1}{2}.2\sqrt{x}+\left(\frac{1}{2}\right)^2=\left(\sqrt{x}+\frac{1}{2}\right)^2\ge\left(0+\frac{1}{2}\right)^2=\frac{1}{4}\)

nên: \(A_{min}=0\).Dấu "=" xảy ra khi: \(x=0\)

đề này mình là sao vậy

14 tháng 6 2019

Ta có: \(\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2+2\left(\frac{1}{ab}+\frac{1}{ac}-\frac{1}{bc}\right).\)

\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}-\frac{2}{ab}-\frac{2}{ac}+\frac{2}{bc}+\frac{2}{ab}+\frac{2}{ac}-\frac{2}{bc}\)

\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)(1)

Mặt khác \(\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2+2\left(\frac{1}{ab}+\frac{1}{ac}-\frac{1}{bc}\right)\)

\(=\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2+2.\frac{c+b-a}{abc}\)

\(=\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2\)(vì a=b+c)      (2) 

Từ (1) và (2) Suy ra 

\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2\)

\(\Rightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}|.\)

Do a,b,c là các số hữu tỉ khác 0 nên \(|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}|\)là một số hữu tỉ 

Từ đây ta có điều phải chứng minh

17 tháng 6 2019

Cảm ơn bạn nhiều nha

14 tháng 6 2019

 ĐK:...

Bài này em đặt :

\(2x=a;\sqrt{13-4x^2}=b,b>0,a\ne0\)

Ta có hệ :

\(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}=\frac{5}{6}\\a^2+b^2=13\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a+b=\frac{5}{6}ab\\\left(a+b\right)^2-2ab=13\end{cases}\Leftrightarrow}\hept{\begin{cases}a+b=\frac{5}{6}ab\\\frac{25}{36}\left(ab\right)^2-2ab=13\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a+b=\frac{5}{6}ab\\\orbr{\begin{cases}ab=6\\ab=-\frac{78}{25}\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}a+b=5\\ab=6\end{cases}}\\\hept{\begin{cases}a+b=-\frac{13}{5}\\ab=-\frac{78}{25}\end{cases}}\end{cases}}\)Từ đó tìm đc a.b => Tìm đc a+b => Tìm đc a, b => Đi tìm x => Đối chiếu đk

14 tháng 6 2019

Không mất tính tổng quát giả sử: \(\left(b-a\right)\left(b-c\right)\le0\) 

\(\Leftrightarrow b^2+ac\le ab+bc\)

\(\Leftrightarrow ab^2+a^2c+bc^2\le a^2b+abc+bc^2\le a^2b+2abc+bc^2\) (Vì\(a,b,c\ge0\) )

\(\Leftrightarrow ab^2+bc^2+ca^2\le b\left(a+c\right)^2=\frac{1}{2}.2b\left(a+c\right)\left(a+c\right)\le\frac{4\left(a+b+c\right)^3}{27}=4\)Vì a+b+c=3

Áp dụng bđt Cô si cho 2 số không âm, ta có:

\(a\sqrt{b^3+1}=a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\frac{a\left(b^2+2\right)}{2}=\frac{ab^2}{2}+a\)

Tương tự với 2 số còn lại rồi cọng lại, ta có;

\(P\le\frac{ab^2+bc^2+ca^2}{2}+a+b+c\le\frac{4}{2}+3=5\)

Dấu bằng xảy ra khi a=0, b=1, c=2 và các hoán vị 

(Hơi lười ghi một chút thông cảm)

14 tháng 6 2019

Thế nếu câu này tìm min thì làm kiểu gì ạ câu này min=3 nhưng em chưa biết làm

14 tháng 6 2019

\(\sqrt{x^2-3x+3}=1\)

\(\Leftrightarrow x^2-3x+3=1\)

\(\Leftrightarrow x^2-3x+2=0\)

\(\Leftrightarrow x_1=2,x_2=1\)

14 tháng 6 2019
X^2-3x+3=1 x^2-3x+2=0 x^2-x-2x+2=0 x(x-1)-2(x-1)=0 (x-2)(x-1)=0 Th1 x-2=0 x=2 Th2 x-1=0 x=1 Vậy s={1,2}
14 tháng 6 2019

\(A=\sqrt{x^2-1+2\sqrt{x^2-1}+1}-\sqrt{x^2-1-2\sqrt{x^2-1}+1}\)

\(=\sqrt{\left(\sqrt{x^2-1}+1\right)^2}-\sqrt{\left(\sqrt{x^2-1}-1\right)^2}\)

\(=\left|\sqrt{x^2-1}+1\right|-\left|\sqrt{x^2-1}-1\right|\)

a) A có nghĩa <=> \(x^2-1\ge0\Leftrightarrow x^2\ge1\Leftrightarrow\orbr{\begin{cases}x\ge1\\x\le-1\end{cases}}\)

b) Nếu \(x\ge\sqrt{2}\)khi đó \(\sqrt{x^2-1}-1\ge\sqrt{\left(\sqrt{2}\right)^2-1}-1=0\)

Ta có: \(A=\sqrt{x^2-1}+1-\left(\sqrt{x^2-1}-1\right)=2\)