60/5+x=60/x-1 giải pt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{x}+\frac{1}{y}=\frac{4}{2x}+\frac{1}{y}=\frac{2^2}{2x}+\frac{1^2}{y}\ge\frac{\left(2+1\right)^2}{2x+y}=\frac{9}{2x+y}\)
\(\Rightarrow\frac{1}{2x+y}\le\frac{1}{9}\left(\frac{2}{x}+\frac{1}{y}\right)\)
dấu "=" xảy ra khi: x=y
Ta đi chứng minh bất đẳng thức sau :
\(\frac{a^2}{m}+\frac{b^2}{n}+\frac{c^2}{p}\ge\frac{\left(a+b+c\right)^2}{m+n+p}\left(m;n;p>0\right)\)
Thật vậy : Áp dụng bđt Bunhiacopxki có
\(\left(\frac{a^2}{m}+\frac{b^2}{n}+\frac{c^2}{p}\right)\left(m+n+p\right)\ge\left(\frac{a}{\sqrt{m}}.\sqrt{m}+\frac{b}{\sqrt{n}}.\sqrt{n}+\frac{c}{\sqrt{p}}.\sqrt{p}\right)^2\)
\(=\left(a+b+c\right)^2\)
\(\Rightarrow\frac{a^2}{m}+\frac{b^2}{n}+\frac{c^2}{p}\ge\frac{\left(a+b+c\right)^2}{m+n+p}\)
Áp dụng ta được
\(\frac{1}{2x+y}=\frac{1}{9}.\frac{9}{x+x+y}=\frac{1}{9}.\frac{\left(1+1+1\right)^2}{x+x+y}\le\frac{1}{9}.\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{9}\left(\frac{2}{x}+\frac{1}{y}\right)\)
Dấu "='' xảy ra <<=> x = y
a)biểu thức có nghĩa khi :
-x4 -2 > 0 <=> - x4 > 2
Ta có \(\left(2x^2+y^2+3\right)\left(2+1+3\right)\ge\left(2x+y+3\right)^2\)
=> \(\frac{1}{\sqrt{2x^2+y^2+3}}\le\frac{\sqrt{6}}{2x+y+3}\)
Mà \(\frac{1}{2x+y+3}=\frac{1}{x+x+y+1+1+1}\le\frac{1}{36}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+3\right)\)
=> \(\frac{1}{\sqrt{2x^2+y^2+3}}\le\frac{\sqrt{6}}{36}\left(\frac{2}{x}+\frac{1}{y}+3\right)\)
Khi đó
\(P\le\frac{\sqrt{6}}{36}\left(\frac{3}{x}+\frac{3}{y}+\frac{3}{z}+9\right)=\frac{\sqrt{6}}{36}.18=\frac{\sqrt{6}}{2}\)
Dấu bằng xảy ra khi x=y=z=1
Vậy \(MaxP=\frac{\sqrt{6}}{2}\)khi x=y=z=1
https://diendantoanhoc.net/topic/182493-%C4%91%E1%BB%81-thi-tuy%E1%BB%83n-sinh-v%C3%A0o-l%E1%BB%9Bp-10-%C4%91hsp-h%C3%A0-n%E1%BB%99i-n%C4%83m-2018-v%C3%B2ng-2/
bài này năm trrong đề thi tuyển sinh vào lớp 10 ĐHSP Hà Nội Năm 2018 (vòng 2) bn có thể tìm đáp án trên mạng để tham khảo
một hình chữ nhật có chiều rộng là 1/3 mét, chiều dài gấp 5 lần chiều rộng. Tính chu vi và diện tích hình chữ nhật đó.
\(\frac{x^2-\sqrt{2}}{x^4+x^2\sqrt{3}-x^2\sqrt{2}-\sqrt{6}}\)
\(=\frac{x^2-\sqrt{2}}{x^2\left(x^2-\sqrt{2}\right)+\sqrt{3}\left(x^2-\sqrt{2}\right)}\)
\(=\frac{x^2-\sqrt{2}}{\left(x^2-\sqrt{2}\right)\left(x^2+\sqrt{3}\right)}\)
\(=\frac{1}{x^2+\sqrt{3}}\)
Vì \(x^2+\sqrt{3}\ge\sqrt{3}\)với \(\forall x\)\(\Rightarrow\frac{1}{x^2+\sqrt{3}}\le\frac{1}{\sqrt{3}}\)\(\Leftrightarrow x=0\)
\(\Rightarrow\)Giá trị lớn nhất của biểu thức là \(\frac{1}{\sqrt{3}}\Leftrightarrow x=0\)
Ta chứng minh bất đẳng thức sau: \(\left(x+y\right)^2\le2\left(x^2+y^2\right).\)
Biến đổi tương đương ta có; \(x^2+2xy+y^2\le x^2+y^2+x^2+y^2\)
\(\Leftrightarrow2xy\le x^2+y^2\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\)
Vì bất đẳng thức cuối luôn đúng với mọi x, y nên bất đẳng thức cần chứng minh đúng
Áp dụng bất đẳng thức trên ta có:
\(\left(x+y\right)^2\le2\left(x^2+y^2\right)=2.1=2\)( \(x^2+y^2=1\)theo giả thiết )
\(\Leftrightarrow\left(x+y\right)^2\le2\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}.\)
Và một cách nữa!
Đặt \(x+y=t\Rightarrow y=t-x\).
Khi đó \(1=x^2+\left(t-x\right)^2=2x^2+2tx+t^2\) (1)
Viết lại (1) thành phương trình bậc hai đối với x: \(2x^2+2tx+\left(t^2-1\right)=0\) (*)
(*) có nghiệm hay: \(\Delta'=t^2-2\left(t^2-1\right)\ge0\Leftrightarrow t^2\le2\)
Hay \(-\sqrt{2}\le t\le\sqrt{2}\) Hay ta có đpcm.
P/s: Đúng ko ạ?:3
#)Giải :
Ta có : \(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\left(1\right)\)
\(\frac{1}{y}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}}\left(2\right)\)
\(\frac{1}{x}+\frac{1}{z}\ge\frac{2}{\sqrt{xz}}\left(3\right)\)
Cộng (1),(2),(3) vế theo vế ta được :
\(2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge2\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\right)\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\left(đpcm\right)\)
Ta thấy : \(\left(x-y\right)^2\ge0\)\(\Rightarrow x^2+y^2\ge2xy\)
Mà : \(x^2+y^2=1\)\(\Rightarrow2xy\le1\)
\(\Rightarrow x^2+y^2+2xy\le1+1\)
\(\Rightarrow\left(x+y\right)^2\le2\)
\(\Leftrightarrow|x+y|\le\sqrt{2}\)
\(\Rightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)\(\left(đpcm\right)\)
\(\frac{60}{5}+x=\frac{60}{x-1}\) (x khác 1)
\(\Leftrightarrow12+x=\frac{60}{x-1}\)
\(\Leftrightarrow\frac{x^2-x-60}{x-1}=12\)\(\Leftrightarrow x^2-x-60=12x-12\)
\(\Leftrightarrow x^2+11x-48=0\)
ĐỂ PT CÓ NGHIỆM THÌ
\(\Delta=11^2+4.48=121+192=323>0\)
giải tiếp là ra