Câu 64. Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A(2;-3), B(0;1). Gọi (T) là tập hợp điểm M thỏa mãn MA2 + MB2 = k . Tìm tất cả các giá trị của k để (T) là một đường tròn.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vẫn thời trẻ trâu nên ko bik câu nài giải như thế nào!Trân trọng!
Gọi I là tâm của đường tròn cần tìm
Vì I thuộc d1 : 3x - y - 5 = 0 và có tung độ âm => I ( x; 3x - 5 ) với 3x - 5 < 0
Gọi A; B là giao điểm của d2 : x - 4 = 0 với đường tròn
=> AB = 8
Gọi M là trung điểm của AB => AM = 8: 2 = 4
=> d( I ; d2 ) = IM = \(\sqrt{AI^2-AM^2}=\sqrt{5^2-4^2}=3\)
khi đó ta có: \(\frac{\left|x-4\right|}{1}=3\)
<=> \(\orbr{\begin{cases}x-4=3\\x-4=-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=7\\x=1\end{cases}}\)
Với x = 7 => I ( 7; 16 ) loại vì 16 > 0
Với x = 1 => I ( 1; -2)
Phương trình đường tròn cần tìm là: ( x - 1 )^2 + ( y + 2 ) ^2 = 25
Đường thẳng a: 3x - 4y - 31 = 0
Gọi I ( x; y ) là tâm của đương tròn cần tìm
Ta có: d( I; a ) = IA = 5 =>\(\frac{\left|3x-4y-31\right|}{\sqrt{3^2+4^2}}=5\) <=> \(\left|3x-4y-31\right|=25\)<=> 3x - 4y - 31 = 25 ( 1) hoặc 3x - 4y - 31 = -25 ( 2)
a có VTPT \(\overrightarrow{n}\) = ( 3; -4) => a có VTCP \(\overrightarrow{u}\) = ( 4; 3 )
Lại có: IA vuông góc với a => ( 1- x ) . 4 + 3 ( - 7 - y ) = 0 <=> - 4x -3 y = 17 (3)
Từ (1) ; (3) => \(I_1\left(4;-11\right)\)
Từ (2) ; (3) => \(I_2\left(-2;-3\right)\)
Đáp án A
Có 2 nghiệm phân biệt cùng dấu dương
\(\hept{\begin{cases}\Delta>0\\P>0\end{cases}\Leftrightarrow\hept{\begin{cases}-2m^2+11m-5>0\\\frac{3\left(m-2\right)}{m-1}>0\end{cases}}}\)
ĐK
\(\hept{\begin{cases}\frac{1}{2}< m< 5\\m< 1haym>2\end{cases}\Leftrightarrow\frac{1}{2}< m< 1\left(hay\right)2< m< 5}\)