Cho x,y,z>0 thỏa mãn \(\sqrt{x}+\sqrt{y}+\sqrt{z}=1\)\(1\).Tìm GTNN của:
\(A=\sqrt{\frac{x^2}{5x+32\sqrt{xy}+12y}}+\sqrt{\frac{y^2}{5y+32\sqrt{yz}+12z}}+\sqrt{\frac{z^2}{5z+32\sqrt{zx}+12x}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình không vẽ hình mong bạn thông cảm
Gọi I,K lần lượt là hình chiếu của B,C xuống AE , G là giao điểm của 3 đường trên
Vì 2 tam giác ABG và tam giác AGC có cùng đáy AG
=>\(\frac{S_{ABG}}{S_{AGC}}=\frac{BI}{CK}\)
Mà \(\frac{BI}{CK}=\frac{EB}{EC}\)(tam giác BIE đồng dạng tam giác CKE)
=> \(\frac{EB}{EC}=\frac{S_{ABG}}{S_{AGC}}\)
Tương tự: \(\frac{DA}{DB}=\frac{S_{AGC}}{S_{BGC}}\), \(\frac{FC}{FA}=\frac{S_{BGC}}{S_{ABG}}\)
=> \(\frac{DA}{DB}+\frac{BE}{EC}+\frac{FC}{FA}=\frac{S_{ABG}}{S_{AGC}}+\frac{S_{AGC}}{S_{BGC}}+\frac{S_{BGC}}{S_{ABG}}\ge3\)Bất đẳng cosi cho 3 số
Dấu bằng xảy ra khi D,E,F lần lượt là trung điểm của AB,BC,AC
Hay G là trọng tâm của tam giác ABC
đề bài
cm
1/a+2 + 1/b+2 +1/c+2 <=1
bn p viết đề chứ???
##thiêndi###