Cho biểu thức p=(x+2/x-2+x/x+2-4/x^2-4):(x-x^2/x+2)với x≠0;x≠±2)
A Rút gọn biểu thức p
B tính giá trị của biểu thức p với thỏa mãn x^2-3x=0
C tìm các giá trị nguyên của x để p nhận giá trị nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DE // AD
=> CD/DB = CE/EA = (đl)
CD = 5 cm (gt) ; BD = 7,5 cm (gt)
=> 5/7,5 = CE/AE
=> CE/AE = 2/3
=> CE/2 = AE/3
=> (CE + AE)/(2 + 3) = AE/3 = CE/2
CE + AE = AC mà AC = 10cm(gT) => CE + EA = 10
=> 10/5 = 2 = AE/3 = CE/2
=> AE = 2.3 = 6 và CE = 2.2 = 4
có AD là pg của tam giác ABC (Gt)
=> BD/BA = DC/AC (đl)
có BD = 7,5 ; DC = 5; AC = 10
=> 7,5/AB = 5/10 = 1/2
=> AB = 7,5.2 = 15
dùng ta let là tính được DE
a) x² + 10x + 25 = (x + 5)^2
b) 16x² – 8x + 1 = (4x - 1)^2
c) 4x² + 12xy + 9y² = (2x + 3y)^2
d) x³ + 3x² + 3x + 1 = (x + 1)^3
e)27y³ – 9y² + y - 1/27 = (3y - 1/3)^3
g) 8x6 + 12x4y + 6x2y2 + y3 = (2x^2 + y)^3
a) \(x^2+10x+25=x^2+2\cdot5\cdot x+5^2=\left(x+5\right)^2\)
b) \(16x^2-8x+1=\left(4x\right)^2-2\cdot4x+1=\left(4x-1\right)^2\)
c) \(4x^2+12xy+9y^2=\left(2x\right)^2+2\cdot2x\cdot3y+\left(3y\right)^2=\left(2x-3y\right)^2\)
d) \(x^3+3x^2+3x+1=\left(x+1\right)^3\)
A)\(8x^3\)\(-\)\(12x^2y\)\(+\)\(6xy^2\)\(-y^3\)
B)\(\left(3x+1\right)\left(9x^2-3x+1\right)\)
C)\(\left(2x-5\right)\left(4x^2+10x+25\right)\)
\(a,P=\frac{x+2}{x-2}+\frac{x}{x+2}-\frac{4}{x^2-4}\)
\(P=\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}+\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{4}{\left(x-2\right)\left(x+2\right)}\)
\(P=\frac{x^2+4x+4+x^2-2x-4}{x^2-4}\)
\(P=\frac{2x^2+2x}{x^2-4}\)
\(P=\frac{2x^2+2x}{x^2-4}\) (1)
\(b,x^2-3x=0\)
\(\Leftrightarrow x\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=3\left(tm\right)\end{cases}}\)
thay vào (1) ta có :
\(P=\frac{2\cdot3^2+2\cdot3}{3^2-4}=\frac{24}{5}\)