Giai phuong trinh x^2+(1/x^2)+16y^2+(1/y^2)=10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^4-x^3+2x^2-x+1=0\)
\(\Leftrightarrow\left(x^4+x^2\right)-\left(x^3+x\right)+\left(x^2+1\right)=0\)
\(\Leftrightarrow x^2\left(x^2+1\right)-x\left(x^2+1\right)+\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\left(ktm\right)\\x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\left(ktm\right)\end{cases}}\)
Vậy phương trình vô nghiệm (ĐPCM)
b) \(x^4-2x^3+4x^2-3x+2=0\)
\(\Leftrightarrow\left(x^4-2x^3+x^2\right)+\left(x^2-2x+1\right)+\left(x^2-x+\frac{1}{4}\right)+\left(x^2+\frac{3}{4}\right)=0\)
\(\Leftrightarrow\left(x^2-x\right)^2+\left(x-1\right)^2+\left(x-\frac{1}{2}\right)^2+\left(x^2+\frac{3}{4}\right)=0\)
Có : \(\left(x^2-x\right)^2\ge0\)
\(\left(x-1\right)^2\ge0\)
\(\left(x-\frac{1}{2}\right)^2\ge0\)
\(x^2+\frac{3}{4}\ge\frac{3}{4}\)
\(\Leftrightarrow\left(x^2-x\right)^2+\left(x-1\right)^2+\left(x-\frac{1}{2}\right)^2+\left(x^2+\frac{3}{4}\right)\ge\frac{3}{4}\)
Vậy phương trình vô nghiệm.(ĐPCM)
\(2x\left(x-2\right)+1=x-1\)
\(\Leftrightarrow2x^2-4x+1-x+1=0\)
\(\Leftrightarrow2x^2-5x+2=0\)
\(\Leftrightarrow2x^2-4x-x+2=0\)
\(\Leftrightarrow2x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\2x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=\frac{1}{2}\end{cases}}}\)
\(a+b=2\Rightarrow\left(a+b\right)^2=4\Rightarrow a^2+b^2+2ab=4\Rightarrow20+2ab=4\Rightarrow2ab=-16\Rightarrow ab=-8\)
\(\Rightarrow a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)=2\left(20+8\right)=2.28=56\)
Ta có
\(a+b=2\)
\(\Leftrightarrow a^2+b^2+2ab=4\)
\(\Leftrightarrow2ab=4-\left(a^2+b^2\right)\)
\(\Leftrightarrow ab=-8\)
\(\Leftrightarrow\hept{\begin{cases}a^2b=-8a\\ab^2=-8b\end{cases}}\)
Lại có
\(\left(a+b\right)\left(a^2+b^2\right)=a^3+b^3+a^2b+ab^2\)
\(=a^3+b^3-8a-8b\)
\(=a^3+b^3-8\left(a+b\right)\)
\(=a^3+b^3-16\)
Mà \(\left(a+b\right)\left(a^2+b^2\right)=2.20=40\)
Nên \(a^3+b^3-16=40\)
\(a^3+b^3=56\)
Vậy \(a^3+b^3=56\)
Áp dụng BDT Svacxo ta có :
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
Cách khác sử dụng Cosi : Dự đoán điểm rơi và ghép hợp lí !
Áp dụng bất đẳng thức cô - si với hai số dương:
\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)
\(\frac{b^2}{c+a}+\frac{a+c}{4}\ge b\)
\(\frac{c^2}{a+b}+\frac{a+b}{4}\ge c\)
\(\frac{a^2}{b+c}+\frac{b+c}{4}+\frac{b^2}{c+a}+\frac{a+c}{4}+\frac{c^2}{a+b}+\frac{a+b}{4}\ge a+b+c\)
=> => \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\)
Dâu "=" xảy ra <=> a = b = c
\(\frac{x+3}{x+2}-\frac{x+4}{x+3}=\frac{x+5}{x+4}-\frac{x+6}{x+5}\)
\(\Leftrightarrow\frac{x+3}{x+2}-\frac{x+4}{x+3}=\frac{x+5}{x+4}-\frac{x+6}{x+5}\)
\(\Leftrightarrow\left(\frac{x+3}{x+2}-1\right)-\left(\frac{x+4}{x+3}-1\right)=\left(\frac{x+5}{x+4}-1\right)-\left(\frac{x+6}{x+5}-1\right)\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+3}=\frac{1}{x+4}-\frac{1}{x+5}\)
\(\Leftrightarrow\frac{1}{x+2}+\frac{1}{x+5}=\frac{1}{x+4}+\frac{1}{x+3}\)
\(\Leftrightarrow\frac{x+5+x+2}{\left(x+2\right)\left(x+5\right)}=\frac{x+4+x+3}{\left(x+4\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{2x+7}{x^2+7x+10}=\frac{2x+7}{x^2+7x+12}\)
\(\Leftrightarrow\orbr{\begin{cases}2x+7=0\\x^2+7x+10=x^2+7x+12\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{7}{2}\left(tm\right)\\0=2\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{7}{2}\right\}\)
Thêm cho mik : \(ĐKXĐ:\hept{\begin{cases}x\ne-2;x\ne-3\\x\ne-4;x\ne-5\end{cases}}\)
Ta có : \(a^3+b^3+c^3=3abc\)
\(\Rightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\left(1\right)\\a^2+b^2+c^2-ab-bc-ca=0\left(2\right)\end{cases}}\)
Từ (1) \(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
Khi đo s: \(P=\frac{abc}{\left(-a\right)\left(-b\right)\left(-c\right)}=-1\)
Từ (2) \(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow a=b=c\)
Khi đó : \(P=\frac{a^3}{2a\cdot2a\cdot2a}=\frac{1}{8}\)
Vậy : \(P=\frac{1}{8}\) hoặc \(P=-1\) với a,b,c thỏa mãn đề.
\(x^2+\frac{1}{x^2}+16y^2+\frac{1}{y^2}-10=0\)
<=>\(\left(x^2-2+\frac{1}{x^2}\right)+\left(16y^2-8+\frac{1}{y^2}\right)=0\)
<=>\(\left[x^2-2\cdot x\cdot\frac{1}{x}+\left(\frac{1}{x}\right)^2\right]+\left[\left(4y\right)^2-2\cdot4y\cdot\frac{1}{y}+\left(\frac{1}{y}\right)^2\right]=0\)
<=>\(\left(x-\frac{1}{x}\right)^2+\left(4y-\frac{1}{y}\right)^2=0\)
Mà \(\left(x-\frac{1}{x}\right)^2;\left(4y-\frac{1}{y}\right)^2>hoac=0\)
=>\(\hept{\begin{cases}\left(x-\frac{1}{x}\right)^2=0\\\left(4y-\frac{1}{y}\right)^2=0\end{cases}}\)
<=>\(\hept{\begin{cases}x-\frac{1}{x}=0\\4y-\frac{1}{y}=0\end{cases}}\)
đoạn này bạn tự giải tiếp
Vậy x=1 và y=1/2
Sorry
Ở trên mình KL thiếu
Còn có x= -1;y=-1/2