Tìm x, y, z thuộc Q, biết: x/5 = y/8; z/3 = y/12 và 2y + z - 4x = 30
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Goi so tien lai cua 3 don vi kinh doanh theo lan luot la : x1;x2;x3 Vi gop von va so tien lai la hai dai luong ti le thuan nen ta co: x1/3 = x2/5=x3/7 va x1 + x2 + x3 =300 Theo tinh chat cua day ty so bang nhau ta co: x1/3 = x2/5 = x3/7 = x1+x2+x3 / 3+5+7 = 20 =>x1/3 = 20 <=> x1=60[tr] x2/5 = 20 <=> x2=100[tr] x3/7 = 20 <=> x3=140[tr] Vay so tien lai cua moi don vi kinh doanh lan luot la : 60tr 100tr 140tr
gọi x,y,z là số tiền từng đơn vị nhận được sau khi chia lãi
ta có \(\hept{\begin{cases}\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\\x+y+z=300tr\end{cases}}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{300tr}{12}=25tr\)
từ đó ta giải ra được \(\hept{\begin{cases}x=75tr\\y=100tr\\z=125tr\end{cases}}\)
Ta có\(\frac{x-1}{2013}+\frac{x-2}{2012}=\frac{x-3}{2011}+\frac{x-4}{2010}\)
=> \(\left(\frac{x-1}{2013}-1\right)+\left(\frac{x-2}{2012}-1\right)=\left(\frac{x-3}{2011}-1\right)+\left(\frac{x-4}{2010}-1\right)\)
=> \(\frac{x-2014}{2013}+\frac{x-2014}{2012}=\frac{x-2014}{2011}+\frac{x-2014}{2010}\)
=> \(\frac{x-2014}{2013}+\frac{x-2014}{2012}-\frac{x-2014}{2011}-\frac{x-2014}{2010}=0\)
=> \(\left(x-2014\right)\left(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}\right)=0\)
Vì \(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}\ne0\)
=> x - 2014 = 0
=> x = 2014
Vậy x = 2014
Gọi 3 phân số cần tìm là \(\frac{a}{x};\frac{b}{y};\frac{c}{z}\)
Ta có \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=12\frac{7}{24}\)
=> \(\frac{ayz+bxz+cxy}{xyz}=\frac{295}{24}\)(1)
Lại có \(\hept{\begin{cases}\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\\\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\end{cases}}\)
Đặt \(\hept{\begin{cases}\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=k\\\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=t\end{cases}}\Rightarrow\hept{\begin{cases}a=3k\\b=5k\\c=7k\end{cases}}\text{ và }\hept{\begin{cases}x=2t\\y=3t\\z=4t\end{cases}}\)
Khi đó (1) <=> \(\frac{3k.3t.4t+5k.2t.4t+7k.2t.3t}{2t.3t.4t}=\frac{295}{24}\)
<=> \(\frac{36kt^2+40kt^2+42kt^2}{24t^3}=\frac{295}{24}\)
=> \(\frac{118kt^2}{24t^3}=\frac{295}{24}\)
=> \(\frac{k}{t}=\frac{5}{2}\)
=> k = 5/2t
Khi đó a = 3k <=> a = 15/2t
b = 5k <=> b = 25/2t
c = 7k <=> c= 35/2t
Khi đó \(\frac{a}{x}=\frac{\frac{15}{2}t}{2t}=\frac{15}{4}\)
\(\frac{b}{y}=\frac{\frac{25}{2}t}{3t}=\frac{25}{6}\)
\(\frac{c}{z}=\frac{\frac{35}{2}t}{4t}=\frac{35}{8}\)
Vậy 3 phân số tìm được là \(\frac{15}{4};\frac{25}{6};\frac{35}{8}\)
Ta có : \(\frac{x}{5}=\frac{y}{8}\Rightarrow\frac{x}{60}=\frac{y}{96}\)(1)
\(\frac{y}{12}=\frac{z}{3}\Rightarrow\frac{y}{96}=\frac{z}{24}\)(2)
Từ 1 ; 2 Suy ra : \(\frac{x}{60}=\frac{y}{96}=\frac{z}{24}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{60}=\frac{y}{96}=\frac{z}{24}=\frac{2y+z-4x}{96.2+24-4.60}=\frac{30}{-26}=-\frac{15}{13}\)
\(x=-\frac{15}{13}.60=-\frac{900}{13}\)
\(y=-\frac{15}{13}.96=-\frac{1440}{13}\)
\(z=-\frac{15}{13}.24=-\frac{360}{13}\)