K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 2 2020

Cho hợp chất \(B\) tác dụng hết với kim loại \(Al\) thu đc \(AlCl_3\)\(H_2\)

\(\Rightarrow B\)\(HCl\) đó có n.tố H, Cl ở sp

Thử lại thấy thoả mãn yêu cầu

\(2Al+6HCl\rightarrow2AlCl_3+3H_2\)

(Không chắc lắm @@)

29 tháng 2 2020

tôi lp 7

gọi \(z,y,z\text{ là các cạnh của tam giác vuông ,ta có}\)

\(x^2+y^2=z^2\left(1\right)\)

\(xy=2\left(x+y+z\right)\left(2\right)\)

\(\text{Từ (1) ta có:}\)

\(z^2=\left(z+y\right)^2-2xy=\left(x+y\right)^2-4\left(x+y+z\right)\Rightarrow\left(x+y\right)^2-4\left(x+y\right)+4=z^2-4z+4\)

\(\Rightarrow\left(x+y-2\right)^2=\left(z+2\right)^2\)

\(\Rightarrow x+y-2=z+2\left(x+y\ge2\right)\)

Thay z=x+y−4vào (2) ta được :

\(\left(x-4\right)\left(y-4\right)=8\)

\(\Leftrightarrow x-4=1;y-4=8\)hoặc  \(x-4=2;y-4=4\)

\(\Leftrightarrow x=5;y=12\)hoặc   \(x=6;y=8\)

29 tháng 2 2020

Đề phải cho là : \(x-y=6,xy=4\) nha !!

Ta có :

 \(\left(x-y\right)^3=x^3-y^3+3xy\left(x-y\right)\)

\(\Rightarrow x^3-y^3=\left(x-y\right)^3-3xy\left(x-y\right)\)

\(=6^3-3\cdot4\cdot6=144\)

29 tháng 2 2020

\(x^2-x+8=y^2\)

\(\Leftrightarrow x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+8=y^2\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{31}{4}=y^2\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2-y^2=-\frac{31}{4}\)

\(\Leftrightarrow\left(x-\frac{1}{2}-y\right)\left(x-\frac{1}{2}+y\right)=\frac{-31}{4}\)

\(\Leftrightarrow\left(2x-1-2y\right)\left(2x-1+2y\right)=-31\)

Nốt nha 

29 tháng 2 2020

\(\frac{1}{4x^2-12x+9}-\frac{3}{9-4x^2}=\frac{4}{4x^2+12x+9}\)

\(\Leftrightarrow\frac{-1}{\left(3-2x\right)^2}-\frac{3}{\left(3-2x\right)\left(3+2x\right)}=\frac{4}{\left(2x+3\right)^2}\)

\(\Leftrightarrow-4x^2-12x-9-27+12x^2-16x^2+48x-36=0\)

\(\Leftrightarrow-8x^2+36x-72=0\)

Rút -4 ra ngoài \(\Leftrightarrow2x^2-9x+18=0\)

\(\Leftrightarrow\left(2x-3\right)\left(x-6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-3=0\\x-6=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}2x=3\\x=6\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=6\end{cases}\left(tmđk\right)}\)