Cho nửa đường tròn tâm O đường kính AB và tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB.Từ M trên Ax vẽ tiếp tuyến thứ 2 MC với nửa đường tròn ( C là tiếp điểm ) . Kẻ CH vuông góc với AB . Chứng minh : MB đi qua trung điểm của CH .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bn viết thiếu kìa, mk sửa lại nha:
Tìm chữ số x và y sao cho: \(\overline{xx}^y=\overline{xyyx}\)
Bài giải:
Tìm y: Ta thấy \(y< 4\)vì nếu \(y\ge4\)thì \(\overline{xx}^y\ge11^4>10^4=10000>\overline{xyyx}\)
Mặt khác: \(y>1\)vì nếu \(y\le1\)thì:
\(\overline{xx}^y\le xx^1=\overline{xx}< \overline{xyyx}\)
Mà \(y\in N\)nên \(y\in\left\{2;3\right\}\)
Xét : \(y=2\Rightarrow\overline{xx}^2\)cho chữ số tận cùng là \(1;4;5;6;9\)
+ Nếu : \(x=1\)thì \(\overline{xx}^y=11^2=121< 1221\)
\(\Rightarrow\)Loại \(x=1\)
+ Nếu : \(x=4\)thì \(\overline{xx^y}=44^2< 50^2=2500< 4224\)
\(\Rightarrow\)Loại \(x=4\)
+ Nếu : \(x=5\)thì \(\overline{xx^y}=55^2< 60^2=3600< 5225\)
\(\Rightarrow\)Loại \(x=5\)
+ Nếu : \(x=6\)thì \(\overline{xx^y}=66^2< 70^2=4900< 6226\)
\(\Rightarrow\)Loại \(x=6\)
+ Nếu : \(x=9\)thì \(\overline{xx^y}=99^2=9801\ne9229\)
\(\Rightarrow\)Loại \(x=9\)
\(\Rightarrow\)Loại \(y=2\)
Xét : \(y=3\Rightarrow\overline{xx}^3=\overline{x33x}\)
Ta thấy : \(x< 2\)vì nếu \(x\ge2\)thì:
\(\overline{xx^3}\ge22^3=10648>\overline{x33x}\)
Mặt khác : \(x>0\)mà \(x\in N\)nên \(x=1\)
Ta có: \(11^3=1331\)( thỏa mãn )
Tóm lại : Với \(x=1\)và \(y=3\)thì ta có : \(\overline{xx}^y=\overline{xyyx}\)thỏa mãn đề bài đã ra
Rất vui vì giúp đc bạn !!! Bạn tham khảo nha ^_^
Có \(\Delta'=\left(m+4\right)^2-m^2+8=m^2+8m+16-m^2+8=24>0\)
Nên pt có nghiệm với mọi m
Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=2\left(m+4\right)\\x_1x_2=m^2-8\end{cases}}\)
a,(Phải là GTLN nhá)
Có \(x_1+x_2-3x_1x_2=2\left(m+4\right)-3\left(m^2-8\right)\)
\(=2m+8-3m^2+24\)
\(=-3m^2+2m+32\)
\(=-3\left(m^2-\frac{2}{3}m+\frac{1}{9}\right)+\frac{95}{3}\)
\(=-3\left(m-\frac{1}{3}\right)^2+\frac{95}{3}\le\frac{95}{3}\)
Dấu "=" <=> m = 1/3
b, Thấy tổng x_1 ; x_2 là bậc 1 của m , tích là bậc 2 của m nên ko tồn tại hệ thức thỏa mãn đề