K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2020

 \(A=\frac{x}{2x-2}+\frac{x^2+1}{2-2x^2}\)

a) Để A có nghĩa \(\Leftrightarrow\hept{\begin{cases}2x-2\ne0\\2-2x^2\ne0\end{cases}}\Leftrightarrow x\ne\pm1\)

b) Ta có \(A=\frac{x}{2x-2}+\frac{x^2+1}{2-2x^2}\)

\(\Rightarrow2A=\frac{x}{x-1}+\frac{x^2+1}{1-x^2}=\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{x^2+1}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x^2+x-x^2-1}{\left(x+1\right)\left(x-1\right)}=\frac{x-1}{\left(x+1\right)\left(x-1\right)}=\frac{1}{x+1}\)

\(\Rightarrow A=\frac{1}{2x+2}\)

KL...

c) Để \(A=\frac{1}{2}\)\(\Leftrightarrow\frac{1}{2x+2}=\frac{1}{2}\)

\(\Leftrightarrow2x+2=2\Leftrightarrow2x=0\Leftrightarrow x=0\)(t/m ĐKXĐ)

KL...

mk giải từng nha == tại vì mk sợ nhiều qus bị troll 

\(\left(3x-2\right)\left(9x^2+6x+4\right)-\left(3x-1\right)\left(9x^2-3x+1\right)=x-4\)

\(27x^3+18x^2+12x-18x^2-12x-8-3x\left(9x^2-3x+1\right)+\left(9x^2-3x+1\right)=x-4\)

\(27x^3-8-3\left(9x^2-3x+1\right)+9x^2-3x+1=x-4\)

\(27x^3-7-3x\left(9x^2-3x+1\right)+9x^2-3x=x-4\)

\(27x^3-7-27x^3+9x^2-3x+9x^2-3x=x-4\)

\(-7+18x^2-6x=x-4\)

\(3-18x^2+7x=0\)

\(x=\frac{-7+\sqrt{265}}{-36};\frac{-7-\sqrt{265}}{-36}\)

\(9\left(2x+1\right)=4\left(x-5\right)^2\)

\(18x+9=4x^2-40x+100\)

\(18x+9-4x^2+40x-100=0\)

\(58x-91-4x^2=0\)

\(x=\frac{29-3\sqrt{53}}{4};\frac{29+3\sqrt{53}}{4}\)

Câu hỏi của Trịnh Minh Châu - Toán lớp 8 - Học toán với OnlineMath

8 tháng 3 2020

Tại sao lại có a?

8 tháng 3 2020

tại đề bài gốc có a. ai biết được

8 tháng 3 2020

a) \(\frac{8xy}{3x-1}:\frac{12xy^3}{5-15x}\)

\(=\frac{8xy}{3x-1}.\frac{5-15x}{12xy^3}\)

\(=\frac{2}{3x-1}.\frac{5\left(1-3x\right)}{3y^2}\)

\(=\frac{10}{3y^2}\)

b) \(\frac{2x+1}{x-2}:\left(-\frac{2x-1}{x-2}\right)\)

\(=\frac{2x+1}{x-2}.\frac{x-2}{1-2x}=\frac{2x+1}{1-2x}\)

8 tháng 3 2020

=.=, làm nhanh lẫn

a) \(=\frac{8xy}{3x-1}.\frac{5\left(3x-1\right)}{-12xy^3}\)

\(=\frac{-10}{3y^2}\)

8 tháng 3 2020

Cô si hết lên!

\(a+1\ge2\sqrt{a}\)

\(b+1\ge2\sqrt{b}\)

\(c+1\ge2\sqrt{c}\)

\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\sqrt{abc}=8\)

Dấu "=" khi a = b = c = 1

8 tháng 3 2020

Áp dụng bdt AM-GM cho 2 số dương a và 1 ta được:

\(a+1\ge2\sqrt{a}\)

tương tự ta có: \(b+1\ge2\sqrt{b}\);\(c+1\ge2\sqrt{c}\)

Suy ra \(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\sqrt{abc}=8\)(do \(abc=1\Rightarrow\sqrt{abc}=1\))

Dấu = xảy ra \(\Leftrightarrow a=b=c=1\)(đpcm)

8 tháng 3 2020

Ta có: \(x^2y-xy^2+y^2z-yz^2+xz^2-x^2z=xy\left(x-y\right)-z\left(x^2-y^2\right)+z^2\left(x-y\right)\)

\(=xy\left(x-y\right)-z\left(x-y\right)\left(x+y\right)+z^2\left(x-y\right)=\left(x-y\right)\left(xy-zx-zy+z^2\right)\)

\(=\left(x-y\right)\left(x\left(y-z\right)-z\left(y-z\right)\right)=\left(x-y\right)\left(y-z\right)\left(x-z\right)\)

8 tháng 3 2020

\(\frac{x^2+6x+9}{\left(x-1\right)^2}.\frac{2x^2-4x-2}{4x^2+24x+36}\)

\(=\frac{x^2+6x+9}{\left(x-1\right)^2}.\frac{2x^2-4x-2}{4\left(x^2+6x+9\right)}\)

\(=\frac{1}{\left(x-1\right)^2}.\frac{2x^2-4x-2}{4}\)

\(=\frac{2x^2-4x-2}{4x^2-8x+4}\)

\(\frac{x^2+6x+9}{\left(x-1\right)^2}.\frac{2x^2-4x-2}{4x^2+24x+36}\)

\(=\frac{x^2+2\left(x\right)\left(3\right)+3^2}{\left(x-1\right)^2}.\frac{2x^2-4x-2}{4x^2+24x+36}\)

\(=\frac{\left(x+3\right)^2}{\left(x-1\right)^2}.\frac{2x^2+4x-2}{4x^2+24x+36}\)

\(=\frac{\left(x+3\right)^2}{\left(x-1\right)^2}.\frac{2\left(x^2-2x-1\right)}{4x^2+24x+36}\)

\(=\frac{\left(x+3\right)^2}{\left(x-1\right)^2}.\frac{2\left(x^2-2x-1\right)}{4\left(x^2+2\left(x\right)\left(3\right)+3^2\right)}\)

\(=\frac{1}{\left(x-1\right)^2}.\frac{2\left(x^2-2x-1\right)}{4}\)

\(=\frac{1.2\left(x^2-2x-1\right)}{\left(x-1\right)^2.4}\)

\(=\frac{2\left(x^2-2x-1\right)}{4\left(x-1\right)^2}\)

\(=\frac{x^2-2x-1}{2\left(x-1\right)^2}\)

8 tháng 3 2020

\(\left(ac+bd\right)^2=a^2c^2+2abcd+b^2d^2\)

\(\left(ad-bc\right)^2=a^2d^2-2abcd+b^2c^2\)

\(\Rightarrow\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)

Mà \(\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)

Nên \(\left(ac+bd\right)^2+\left(ad-bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)(đpcm)

8 tháng 3 2020

Ta có \(VP=\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+b^2c^2+a^2d^2+b^2d^2\)(1)

\(VT=\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)

\(=a^2c^2+b^2c^2+a^2d^2+b^2d^2\)(2)

từ (1),(2)\(\Rightarrowđpcm\)