Cho biểu thức : \(A=\frac{x}{2x-2}+\frac{x^2+1}{2-2x^2}\)
a)Với giá trị biểu thức nào thì A có nghĩa
b)Rút gọn biểu thức A
C)Tìm giá trị của a để A=\(\frac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk giải từng nha == tại vì mk sợ nhiều qus bị troll
\(\left(3x-2\right)\left(9x^2+6x+4\right)-\left(3x-1\right)\left(9x^2-3x+1\right)=x-4\)
\(27x^3+18x^2+12x-18x^2-12x-8-3x\left(9x^2-3x+1\right)+\left(9x^2-3x+1\right)=x-4\)
\(27x^3-8-3\left(9x^2-3x+1\right)+9x^2-3x+1=x-4\)
\(27x^3-7-3x\left(9x^2-3x+1\right)+9x^2-3x=x-4\)
\(27x^3-7-27x^3+9x^2-3x+9x^2-3x=x-4\)
\(-7+18x^2-6x=x-4\)
\(3-18x^2+7x=0\)
\(x=\frac{-7+\sqrt{265}}{-36};\frac{-7-\sqrt{265}}{-36}\)
\(9\left(2x+1\right)=4\left(x-5\right)^2\)
\(18x+9=4x^2-40x+100\)
\(18x+9-4x^2+40x-100=0\)
\(58x-91-4x^2=0\)
\(x=\frac{29-3\sqrt{53}}{4};\frac{29+3\sqrt{53}}{4}\)
Câu hỏi của Trịnh Minh Châu - Toán lớp 8 - Học toán với OnlineMath
a) \(\frac{8xy}{3x-1}:\frac{12xy^3}{5-15x}\)
\(=\frac{8xy}{3x-1}.\frac{5-15x}{12xy^3}\)
\(=\frac{2}{3x-1}.\frac{5\left(1-3x\right)}{3y^2}\)
\(=\frac{10}{3y^2}\)
b) \(\frac{2x+1}{x-2}:\left(-\frac{2x-1}{x-2}\right)\)
\(=\frac{2x+1}{x-2}.\frac{x-2}{1-2x}=\frac{2x+1}{1-2x}\)
=.=, làm nhanh lẫn
a) \(=\frac{8xy}{3x-1}.\frac{5\left(3x-1\right)}{-12xy^3}\)
\(=\frac{-10}{3y^2}\)
Cô si hết lên!
\(a+1\ge2\sqrt{a}\)
\(b+1\ge2\sqrt{b}\)
\(c+1\ge2\sqrt{c}\)
\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\sqrt{abc}=8\)
Dấu "=" khi a = b = c = 1
Áp dụng bdt AM-GM cho 2 số dương a và 1 ta được:
\(a+1\ge2\sqrt{a}\)
tương tự ta có: \(b+1\ge2\sqrt{b}\);\(c+1\ge2\sqrt{c}\)
Suy ra \(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\sqrt{abc}=8\)(do \(abc=1\Rightarrow\sqrt{abc}=1\))
Dấu = xảy ra \(\Leftrightarrow a=b=c=1\)(đpcm)
Ta có: \(x^2y-xy^2+y^2z-yz^2+xz^2-x^2z=xy\left(x-y\right)-z\left(x^2-y^2\right)+z^2\left(x-y\right)\)
\(=xy\left(x-y\right)-z\left(x-y\right)\left(x+y\right)+z^2\left(x-y\right)=\left(x-y\right)\left(xy-zx-zy+z^2\right)\)
\(=\left(x-y\right)\left(x\left(y-z\right)-z\left(y-z\right)\right)=\left(x-y\right)\left(y-z\right)\left(x-z\right)\)
\(\frac{x^2+6x+9}{\left(x-1\right)^2}.\frac{2x^2-4x-2}{4x^2+24x+36}\)
\(=\frac{x^2+6x+9}{\left(x-1\right)^2}.\frac{2x^2-4x-2}{4\left(x^2+6x+9\right)}\)
\(=\frac{1}{\left(x-1\right)^2}.\frac{2x^2-4x-2}{4}\)
\(=\frac{2x^2-4x-2}{4x^2-8x+4}\)
\(\frac{x^2+6x+9}{\left(x-1\right)^2}.\frac{2x^2-4x-2}{4x^2+24x+36}\)
\(=\frac{x^2+2\left(x\right)\left(3\right)+3^2}{\left(x-1\right)^2}.\frac{2x^2-4x-2}{4x^2+24x+36}\)
\(=\frac{\left(x+3\right)^2}{\left(x-1\right)^2}.\frac{2x^2+4x-2}{4x^2+24x+36}\)
\(=\frac{\left(x+3\right)^2}{\left(x-1\right)^2}.\frac{2\left(x^2-2x-1\right)}{4x^2+24x+36}\)
\(=\frac{\left(x+3\right)^2}{\left(x-1\right)^2}.\frac{2\left(x^2-2x-1\right)}{4\left(x^2+2\left(x\right)\left(3\right)+3^2\right)}\)
\(=\frac{1}{\left(x-1\right)^2}.\frac{2\left(x^2-2x-1\right)}{4}\)
\(=\frac{1.2\left(x^2-2x-1\right)}{\left(x-1\right)^2.4}\)
\(=\frac{2\left(x^2-2x-1\right)}{4\left(x-1\right)^2}\)
\(=\frac{x^2-2x-1}{2\left(x-1\right)^2}\)
\(\left(ac+bd\right)^2=a^2c^2+2abcd+b^2d^2\)
\(\left(ad-bc\right)^2=a^2d^2-2abcd+b^2c^2\)
\(\Rightarrow\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)
Mà \(\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)
Nên \(\left(ac+bd\right)^2+\left(ad-bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)(đpcm)
\(A=\frac{x}{2x-2}+\frac{x^2+1}{2-2x^2}\)
a) Để A có nghĩa \(\Leftrightarrow\hept{\begin{cases}2x-2\ne0\\2-2x^2\ne0\end{cases}}\Leftrightarrow x\ne\pm1\)
b) Ta có \(A=\frac{x}{2x-2}+\frac{x^2+1}{2-2x^2}\)
\(\Rightarrow2A=\frac{x}{x-1}+\frac{x^2+1}{1-x^2}=\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{x^2+1}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^2+x-x^2-1}{\left(x+1\right)\left(x-1\right)}=\frac{x-1}{\left(x+1\right)\left(x-1\right)}=\frac{1}{x+1}\)
\(\Rightarrow A=\frac{1}{2x+2}\)
KL...
c) Để \(A=\frac{1}{2}\)\(\Leftrightarrow\frac{1}{2x+2}=\frac{1}{2}\)
\(\Leftrightarrow2x+2=2\Leftrightarrow2x=0\Leftrightarrow x=0\)(t/m ĐKXĐ)
KL...