Cho \(T=2\sqrt{x-1}+\sqrt{3x^2-10x+11}\left(x\ge1\right)\)
Tìm giá trị nhỏ nhất của T.
Mong các bạn giúp đỡ mình.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em không chắc đâu nha, sai thì xin thông cảm cho ạ
\(a=b=c=\frac{\sqrt{3}}{3}\Rightarrow B=\frac{3\sqrt{3}}{2}\). Ta se chung minh do la gia tri min cua B. That vay:
\(BĐT\Leftrightarrow\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}+\frac{c}{a^2+b^2}\ge\frac{3\sqrt{3}}{2}=\frac{3\sqrt{3}}{2\sqrt{a^2+b^2+c^2}}\)
BĐT trên đồng bậc, nên ta chuẩn hóa a2 + b2 + c2 = 3 và chứng minh:
\(\frac{a}{3-a^2}+\frac{b}{3-b^2}+\frac{c}{3-c^2}\ge\frac{3}{2}\) (2)
Ta chứng minh BĐT sau: \(\frac{a}{3-a^2}\ge\frac{1}{2}a^2\Leftrightarrow\frac{a^2}{2}-\frac{a}{3-a^2}\le0\)
\(\Leftrightarrow\frac{-\left(a-1\right)^2a\left(a+2\right)}{2\left(3-a^2\right)}\le0\) (Đúng)
Tương tự với hai BĐT còn lại và cộng theo vế suy ra BĐT (2) là đúng.
Suy ra BĐT (1) là đúng suy ra \(B_{min}=\frac{3\sqrt{3}}{2}\)
Vậy...
Xét \(\frac{a}{b^2+c^2}=\frac{a}{1-a^2}\ge\frac{3\sqrt{3}}{2}a^2\)
<=> \(a^4-a^2+\frac{2\sqrt{3}}{9}a\ge0\)
<=> \(a\left(a+\frac{2\sqrt{3}}{3}\right)\left(a-\frac{\sqrt{3}}{3}\right)^2\ge0\)luôn đúng
=> \(B\ge\frac{3\sqrt{3}}{2}\left(a^2+b^2+c^2\right)=\frac{3\sqrt{3}}{2}\)
Min \(B=\frac{3\sqrt{3}}{2}\)khi \(a=b=c=\frac{\sqrt{3}}{3}\)
A B C
Tam giác ABC vuông tại A có \(cotgB=\frac{5}{8}\)
\(\Rightarrow\frac{AB}{AC}=\frac{5}{8}\Rightarrow\frac{5}{AC}=\frac{5}{8}\Rightarrow AC=8\left(cm\right)\)
\(BC^2=AB^2+AC^2=5^2+8^2=89\)
\(\Rightarrow BC=\sqrt{89}\left(cm\right)\)
Tự vẽ hình nha
Ta có : cotB = 5858 =ABAC=ABAC
=> AB = 5(cm)
AC = 8(cm)
Áp dụng định lý Py-ta-go vào △ABC△ABC vuông tại A , có :
BC2=AB2+AC2BC2=AB2+AC2
⇔⇔ BC2=52+82BC2=52+82
⇔⇔ BC2=25+64BC2=25+64
⇔⇔ BC2=89BC2=89
⇒⇒ BC=√89BC=89 (cm)
Giải phương trình sau:
√3x2−5x+1−√x2−2=√3(x2−x−1)−√x2−3x+4
ĐKXD: \(3x^2-7x+5\ge0;x^2-x+4\ge0;3x^2-5x+1\ge0\)
Phương trình tương đương
\(\sqrt{3x^2-7x+5}-\sqrt{3x^2-5x+1}=\sqrt{x^2-2}-\sqrt{x^2-x+4}\)
\(\left(=\right)\frac{-2\left(x-2\right)}{\sqrt{3x^2-7x+5}+\sqrt{3x^2-5x+1}}=\frac{x-2}{\sqrt{x^2+2}+\sqrt{x^2-x+4}}\)
\(\left(=\right)\left(x-2\right)\left(\frac{-2}{\sqrt{3x^2-7x+5}+\sqrt{3x^2-5x+1}}-\frac{1}{\sqrt{x^2+2}+\sqrt{x^2-x+4}}\right)=0\)
Dễ đàng đánh giá Trường hợp còn lại nhỏ hơn 0. Từ đó suy ra x=2(thỏa)
#)Giải :
\(\left(x+\sqrt{x^2+2019}\right)\left(x+\sqrt{y^2+2019}\right)=2019\)
\(\Leftrightarrow x^2+2019-x^2=2019\)
\(\Leftrightarrow\sqrt{x^2+2019}-x=\sqrt{y^2+2019}+y\)
\(\Leftrightarrow x+y=\sqrt{x^2+2019}-\sqrt{y^2+2019}\left(1\right)\)
\(\left(\sqrt{x^2+2019}+y\right)\left(\sqrt{y^2+2019}-y\right)=2019\)
\(\Leftrightarrow\sqrt{y^2+2019}-y=\sqrt{x^2+2019}+x\)
\(\Leftrightarrow x+y=\sqrt{y^2+2019}-\sqrt{x^2+2019}\left(2\right)\)
Cộng hai vế (1) và (2) với nhau. ta được :
\(2\left(x+y\right)=0\Leftrightarrow x+y=0\)
|*Đúng k nhỉ ???*|
#)Giải :
A B C H
Lưu ý : Hình ảnh chỉ mang tính chất minh họa, không đúng 100% về kích thước
Áp dụng hệ thức lượng vào tam giác vuông ABC :
\(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\Leftrightarrow\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{576}\)
Mà \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow AB=\frac{3}{4}AC\)
\(\Rightarrow\hept{\begin{cases}AB=30cm\\AC=40cm\end{cases}}\)
Áp dụng định lí Py - ta - go :
\(BC^2=AB^2+AC^2\Rightarrow BC^2=30^2+40^2=2500\Rightarrow BC=\sqrt{2500}=50\)
Tiếp tục áp dụng hệ thức lượng :
\(\Rightarrow\hept{\begin{cases}BH.BC=AB^2\\CH.BC=AC^2\end{cases}\Rightarrow\hept{\begin{cases}BH=18cm\\CH=32cm\end{cases}}}\)
Vậy BH = 18cm ; CH = 32cm
\(A=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}+\frac{1}{1+\sqrt{x}}\left(x\ge0;x\ne1\right)\)
\(=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}+\frac{1}{\sqrt{x}+1}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(x+2\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)+x\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x\sqrt{x}+2\sqrt{x}+x+2+x\sqrt{x}-\sqrt{x}+x-1+x\sqrt{x}-1}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{3x\sqrt{x}+\sqrt{x}+2x}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
_Ko chắc>
_Y nguyệt_