Cho hình vuông ABCD có cạnh là a. Lấy I \(\in\)BA.
DI cắt BC tại E; CI cắt AE tại M và cắt AD tại P; BM cắt AP tại K
Đặt AI = x
a) Tính BE, AP thep a và x
b) CMR : AK = AI
c) CMR : BM vuông góc vs DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/\(\sqrt{12}+2\sqrt{27}+3\sqrt{75}-9\sqrt{48}\)
\(=2\sqrt{3}+6\sqrt{3}+15\sqrt{3}-36\sqrt{3}=-13\sqrt{3}\)
b/ \(2\sqrt{3}\left(\sqrt{27}+2\sqrt{48}-\sqrt{75}\right)\)
\(=2\sqrt{3}\left(3\sqrt{3}+8\sqrt{3}-5\sqrt{3}\right)\)
\(=2\sqrt{3}\cdot6\sqrt{3}=2\cdot6\cdot3=36\)
c/ \(\left(1+\sqrt{3}-\sqrt{2}\right)\left(1+\sqrt{3}+\sqrt{2}\right)\)
\(=\left(1+\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2\)
\(=1+2\sqrt{3}+3-2\)
\(=2+2\sqrt{3}\)
d/ \(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}\)
\(=\sqrt{13-4\sqrt{10}}-\sqrt{53+4\sqrt{90}}\)
\(=\sqrt{8-4\sqrt{10}+5}-\sqrt{45+12\sqrt{10}+8}\)
\(=\sqrt{\left(2\sqrt{2}\right)^2-2\cdot2\sqrt{2\cdot5}+\left(\sqrt{5}\right)^2}-\sqrt{\left(3\sqrt{5}\right)^2+2\cdot3\cdot2\sqrt{5\cdot2}+\left(2\sqrt{2}\right)^2}\)
\(=\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}-\sqrt{\left(3\sqrt{5}+2\sqrt{2}\right)^2}\)
\(=2\sqrt{2}-\sqrt{5}-3\sqrt{5}-2\sqrt{2}\)
\(=-4\sqrt{5}\)
#)Giải :
Ta có : \(x^2+y^2-xy=4\Leftrightarrow x^2+y^2=4+xy\Leftrightarrow3\left(x^2+y^2\right)=8\left(x+y\right)^2\ge8\)
\(\Rightarrow A_{max}=8\)
Dấu''='' xảy ra khi x = y = 2 hoặc x = y = -2
\(9-12x+4x^2>0\)
\(\Rightarrow\left(2-2x\right)^2>0\)
\(\Rightarrow2-2x>0\)
\(\Rightarrow-2x>-2\)
\(\Rightarrow x< 1\)
Vậy để A có nghĩa thì \(x< 1\)
B) \(\sqrt{x+2\sqrt{x-1}}\ne0\)
\(x+2\sqrt{x-1}>0\)
\(\Rightarrow x-1+2\sqrt{x-1}+1>0\)
\(\Rightarrow\left(\sqrt{x-1}+1\right)^2>0\)
\(\sqrt{x-1}\ge0\Rightarrow x\ge1\)\(\)
Vậy \(x\ge1\)thì B có nghĩa
C) \(\sqrt{3x-2}.\sqrt{x-1}\ge0\)
\(\orbr{\begin{cases}3x-2\ge0\\x-1\ge0\end{cases}}\Rightarrow\orbr{\begin{cases}x\ge\frac{2}{3}\\x\ge1\end{cases}}\)
Vậy \(x\ge1\)thì C có nghĩa
a) \(\frac{1}{\sqrt{9-12x+4x^2}}=\frac{1}{\sqrt{\left(2x-3\right)^2}}=\frac{1}{2x-3}\)
để căn thức A có nghĩa \(\Rightarrow2x-3\ne0\Leftrightarrow x\ne\frac{3}{2}\)
b)\(\frac{1}{\sqrt{x+2\sqrt{x}+1}}=\frac{1}{\sqrt{\left(\sqrt{x}+1\right)^2}}=\frac{1}{\sqrt{x}+1}\)
để căn thức B có nghĩa => \(\sqrt{x}+1\ne0\) và \(x\ge0\) hay \(\sqrt{x}+1>1\Leftrightarrow x=0\)
Vậy..........
Em không chắc đâu nha, sai thì xin thông cảm cho ạ
\(a=b=c=\frac{\sqrt{3}}{3}\Rightarrow B=\frac{3\sqrt{3}}{2}\). Ta se chung minh do la gia tri min cua B. That vay:
\(BĐT\Leftrightarrow\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}+\frac{c}{a^2+b^2}\ge\frac{3\sqrt{3}}{2}=\frac{3\sqrt{3}}{2\sqrt{a^2+b^2+c^2}}\)
BĐT trên đồng bậc, nên ta chuẩn hóa a2 + b2 + c2 = 3 và chứng minh:
\(\frac{a}{3-a^2}+\frac{b}{3-b^2}+\frac{c}{3-c^2}\ge\frac{3}{2}\) (2)
Ta chứng minh BĐT sau: \(\frac{a}{3-a^2}\ge\frac{1}{2}a^2\Leftrightarrow\frac{a^2}{2}-\frac{a}{3-a^2}\le0\)
\(\Leftrightarrow\frac{-\left(a-1\right)^2a\left(a+2\right)}{2\left(3-a^2\right)}\le0\) (Đúng)
Tương tự với hai BĐT còn lại và cộng theo vế suy ra BĐT (2) là đúng.
Suy ra BĐT (1) là đúng suy ra \(B_{min}=\frac{3\sqrt{3}}{2}\)
Vậy...
Xét \(\frac{a}{b^2+c^2}=\frac{a}{1-a^2}\ge\frac{3\sqrt{3}}{2}a^2\)
<=> \(a^4-a^2+\frac{2\sqrt{3}}{9}a\ge0\)
<=> \(a\left(a+\frac{2\sqrt{3}}{3}\right)\left(a-\frac{\sqrt{3}}{3}\right)^2\ge0\)luôn đúng
=> \(B\ge\frac{3\sqrt{3}}{2}\left(a^2+b^2+c^2\right)=\frac{3\sqrt{3}}{2}\)
Min \(B=\frac{3\sqrt{3}}{2}\)khi \(a=b=c=\frac{\sqrt{3}}{3}\)
A B C
Tam giác ABC vuông tại A có \(cotgB=\frac{5}{8}\)
\(\Rightarrow\frac{AB}{AC}=\frac{5}{8}\Rightarrow\frac{5}{AC}=\frac{5}{8}\Rightarrow AC=8\left(cm\right)\)
\(BC^2=AB^2+AC^2=5^2+8^2=89\)
\(\Rightarrow BC=\sqrt{89}\left(cm\right)\)
Tự vẽ hình nha
Ta có : cotB = 5858 =ABAC=ABAC
=> AB = 5(cm)
AC = 8(cm)
Áp dụng định lý Py-ta-go vào △ABC△ABC vuông tại A , có :
BC2=AB2+AC2BC2=AB2+AC2
⇔⇔ BC2=52+82BC2=52+82
⇔⇔ BC2=25+64BC2=25+64
⇔⇔ BC2=89BC2=89
⇒⇒ BC=√89BC=89 (cm)