cho biểu thức B: B=\(\left(\frac{3-x}{x+3}\times\frac{x^2+6x+9}{x^2-9}\right)\div\frac{3x^2}{x+3}\)
a) Rút gọn biểu thức
b) Tính giá trị của biểu thức B, biết \(x^2-4x+3=0\)
c) tìm giá trị của x để B>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
A B C M N P
a) Xét tam giác BMC và tam giác MCN có:
Chung đường cao hạ từ M xuống BN, 2 đáy BC=CN
\(\Rightarrow S_{BMC}=S_{MCN}\)
\(\Rightarrow S_{BMN}=2S_{BMC}\)(1)
Xét tam giác ABC và tam giác BMC có:
Chung đường cao hạ từ C xuống đường thẳng AM , 2 đáy AB=BM
\(\Rightarrow S_{ABC}=S_{BMC}\)(2)
Từ (1) và (2) \(\Rightarrow S_{BMN}=2S_{ABC}\)
CMTT \(S_{APM}=2S_{ABC};S_{PCN}=2S_{ABC}\)
\(\Rightarrow S_{PMN}=S_{PCN}+S_{APM}+S_{BMN}+S_{ABC}\)
\(=7S_{ABC}\left(đpcm\right)\)
Bài 3:
Áp dụng tính chất 2 tam giác có chung đường cao thì tỉ số diện tích bằng tỉ số 2 đáy tương ứng với đường cao đó, ta có:
\(BP=\frac{1}{3}BC\Rightarrow S_{ABP}=\frac{1}{3}S_{ABC}\)
Tương tự có \(\hept{\begin{cases}S_{BMC}=\frac{1}{3}S_{ABC}\\S_{CAN}=\frac{1}{3}S_{ABC}\end{cases}}\)
\(\Rightarrow S_{ABP}+S_{BMC}+S_{CAN}=S_{ABC}\)
\(\Rightarrow S_{ANE}+S_{BNEF}+S_{BFP}+S_{BFP}+S_{CPFI}+S_{CMI}+S_{CMI}+S_{MIEA}+S_{ANE}\)
\(=S_{ANE}+S_{BNEF}+S_{CPFI}+S_{BFP}+S_{CPFI}+S_{CMI}+S_{MIEA}+S_{EFI}\)
\(\Rightarrow S_{ANE}+S_{BFP}+S_{CMI}=S_{EFI}\left(đpcm\right)\)
a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)
\(P=\frac{x^2}{5x+25}+\frac{2x-10}{x}+\frac{50+5x}{x^2+5x}\)\(=\frac{x^2}{5\left(x+5\right)}+\frac{2\left(x-5\right)}{x}+\frac{5\left(x+10\right)}{x\left(x+5\right)}\)
\(=\frac{x^3}{5x\left(x+5\right)}+\frac{10\left(x-5\right)\left(x+5\right)}{5x\left(x+5\right)}+\frac{25\left(x+10\right)}{5x\left(x+5\right)}\)
\(=\frac{x^3+10\left(x-5\right)\left(x+5\right)+25\left(x+10\right)}{5x\left(x+5\right)}=\frac{x^3+10\left(x^2-25\right)+25x+250}{5x\left(x+5\right)}\)
\(=\frac{x^3+10x^2-250+25x+250}{5x\left(x+5\right)}=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}\)\(=\frac{x\left(x^2+10x+25\right)}{5x\left(x+5\right)}\)\(=\frac{\left(x+5\right)^2}{5\left(x+5\right)}=\frac{x+5}{5}\)
b) \(x^2-3x=0\)\(\Leftrightarrow x\left(x-3\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
So sánh với ĐKXĐ, ta thấy \(x=0\)không thoả mãn
Thay \(x=3\)vào biểu thức ta được: \(P=\frac{3+5}{5}=\frac{8}{5}\)
c) Để \(P=-4\)thì \(\frac{x+5}{5}=-4\)\(\Leftrightarrow x+5=-20\)\(\Leftrightarrow x=-25\)( thoả mãn ĐKXĐ )
Vậy \(P=-4\)\(\Leftrightarrow x=-25\)
d) Để \(P\ge0\)thì \(\frac{x+5}{5}\ge0\)\(\Leftrightarrow x+5\ge0\)( vì \(5>0\))\(\Leftrightarrow x\ge-5\)
So sánh với ĐKXĐ, ta thấy x phải thoả mãn \(x>-5\)và \(x\ne0\)
Vậy \(P\ge0\)\(\Leftrightarrow\)\(x>-5\)và \(x\ne0\)
Bài 1:
A B C D O M N P Q
a) Xét tam giác AOD có M là trung điểm của AO (gt) Q là trung điểm của OD (gt)
\(\Rightarrow MQ//AD,MQ=\frac{1}{2}AD\left(tc\right)\left(1\right)\)
CMTT \(MN//AB,MN=\frac{1}{2}AB\left(2\right)\)
\(NP=\frac{1}{2}BC\left(3\right)\)
\(PQ=\frac{1}{2}DC\left(4\right)\)
Mà AB=BC=CD=DA (tc) (5)
Từ (1) ,(2) ,(3),(4) và (5)\(\Rightarrow MN=NP=PQ=MQ\)
Xét tứ giác MNPQ có \(MN=NP=PQ=MQ\left(gt\right)\)
\(\Rightarrow MNPQ\)là hình thoi ( dhnb) (6)
Ta có: \(\hept{\begin{cases}MQ//AD\left(cmt\right)\\MN//AB\left(cmt\right)\end{cases}}\)mà \(AD\perp AB\)
\(\Rightarrow MQ\perp MN\)
\(\Rightarrow\widehat{QMN}=90^0\)(7)
Từ (6) và (7) \(\Rightarrow MNPQ\)là hình vuông (dhnb )
b) Ta có\(MQ=\frac{1}{2}AD\left(cmt\right)\)
mà \(AD=16\left(cm\right)\)
\(\Rightarrow MQ=8\left(cm\right)\)
\(\Rightarrow S_{MNPQ}=8^2=64\left(cm^2\right)\)
\(\Rightarrow S_{ABCD}=16^2=256\left(cm^2\right)\)
Vậy diện tích phần trong của hình vuông ABCD nằm ngoài tứ giác MNPQ =\(256-64=192\left(cm^2\right)\)
A B D C O K H
Kẻ \(BH\perp AD,CK\perp AD\)
\(\Rightarrow BH//CK\)
Ta có: \(\hept{\begin{cases}BH//CK\\BC//HK\end{cases}\Rightarrow BH=CK}\)( tc cặp đoạn chắn )
Xét tam giác ABD và tam giác ACD có:
2 đường cao BH,CK = nhau , đáy AD chung
\(\Rightarrow S_{ABD}=S_{ACD}\)
\(\Leftrightarrow S_{OAB}+S_{AOD}=S_{AOD}+S_{OCD}\)
\(\Leftrightarrow S_{OAB}=S_{OCD}\left(đpcm\right)\)
PS: có 1 tính chất học ở kì I lớp 8 á nhưng mình không biết cách giải thích sao nữa nên mình dùng cặp đoạn chắn
\(ĐKXĐ:\hept{\begin{cases}x\ne\pm3\\x\ne0\end{cases}}\)
a) \(B=\left(\frac{3-x}{x+3}\cdot\frac{x^2+6x+9}{x^2-9}\right):\frac{3x^2}{x+3}\)
\(\Leftrightarrow B=\left(\frac{3-x}{x+3}\cdot\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}\right):\frac{3x^2}{x+3}\)
\(\Leftrightarrow B=\frac{\left(3-x\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}\cdot\frac{x+3}{3x^2}\)
\(\Leftrightarrow B=-\frac{x+3}{3x^2}\)
b) Khi \(x^2-4x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x=3\left(ktm\right)\end{cases}}\)
\(\Leftrightarrow x=1\)
\(\Leftrightarrow B=-\frac{1+3}{3.1^2}=-\frac{4}{3.}\)
c) Để B > 0
\(\Leftrightarrow-\frac{x+3}{3x^2}>0\)
\(\Leftrightarrow\frac{x+3}{3x^2}< 0\)
\(\Leftrightarrow x+3< 0\) (Do 3x2 > 0; loại giá trị = 0)
\(\Leftrightarrow x< -3\)
Vậy để \(B>0\Leftrightarrow x< -3\)