Tam giác ABC đường trung tuyến AD, góc BAD=góc C. Phân giác AM của góc A( M thuộc BC), DN ủa góc BHA(N thuộc AB). Chứng minh MN//AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: (a-b)2\(\ge0\)
Suy ra (a+b)2\(\ge4ab\)
Suy ra \(\frac{1}{a+b}\)\(\le\frac{a+b}{4ab}\)
Suy ra \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(a,\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4-\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right).\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right).\sqrt{4-\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right).\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right).\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)^2\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=\left(4+\sqrt{15}\right).2\left(4-\sqrt{15}\right)\)
\(=2\)
\(b,\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{4}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=1+\sqrt{2}\)
Ta có \(0< 3y^2+1< 4y^2+4\)
=> \(y^4< y^4+3y^4+1< \left(y^2+2\right)^2\)
=> \(y^4< x^4< \left(y^2+2\right)^2\)
Mà x,y nguyên
=> \(x^2=y^2+1\)
=> \(y^4+2y^2+1=y^4+3y^2+1\)
=> \(y=0\)=> x=0
Vậy (x,y)=(0;0)
ĐK \(x\ge-2004\)
\(x^2-2004=-\sqrt{x+2004}\)
Đặt \(\sqrt{x+2004}=a\left(a\ge0\right)\)
=> \(\hept{\begin{cases}x^2-2004=-a\\a^2-2004=x\end{cases}}\)
=> \(\left(x+a\right)\left(x-a\right)+\left(a+x\right)=0\)
=> \(\left(x+a\right)\left(x-a+1\right)=0\)
=> \(\orbr{\begin{cases}x=-a\\x=a-1\end{cases}}\)
+ x=-a
=> \(x=-\sqrt{x+2004}\)
=> \(\hept{\begin{cases}x\le0\\x^2-x-2004=0\end{cases}}\)=> \(x=\frac{1-\sqrt{8017}}{2}\)(TmĐK)
+ \(x=a-1\)
=> \(x+1=-\sqrt{x+2004}\)
=> \(\hept{\begin{cases}x\le-1\\x^2+x-2003=0\end{cases}}\)=> \(x=\frac{-1-\sqrt{8013}}{2}\)(TTMĐK)
Vậy \(S=\left\{\frac{-1-\sqrt{8013}}{2};\frac{1-\sqrt{8017}}{2}\right\}\)