một khối 8 có 2/3 số học sinh đội tuyển toán bằng 3/4 số học sinh đội tuyển anh bà bằng 4/5 số học sinh đội tuyển văn. Đôi tuyển văn có số học sinh ít hơn tổng số học sinh của 2 đội tuyển kia là 38 học sinh. Tính số học sinh mỗi đội tuyển
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x-1\right)^2=2x\left(2x+3\right)\)
=>\(4x^2-4x+1=4x^2+6x\)
=>\(4x^2-4x+1-4x^2-6x=0\)
=>\(-10x+1=0=>x=\frac{1}{10}\)
Bài giải
\(\left(2x-1\right)^2=2x\left(2x+3\right)\)
\(\left(2x-1\right)^2=2x\left(2x-1+4\right)\)
\(\left(2x-1\right)^2=2x\left(2x-1\right)+8x\)
\(\left(2x-1\right)^2-2x\left(2x-1\right)=8x\)
\(\left(2x-1-2x\right)\left(2x-1\right)=8x\)
\(-2x+1=8x\)
\(8x+2x=1\)
\(10x=1\)
\(x=\frac{1}{10}\)
\(M=a+\frac{\left(2a+b\right)\left(2+b\right)-\left(2a-b\right)\left(2-b\right)}{4-b^2}-\frac{4a}{4-b^2}.\)
\(=a+\frac{4b\left(a+1\right)-4a}{4-b^2}\)
Ta có \(4ab+4b-4a=4\left[\frac{a^2}{a+1}+\frac{a}{a+1}-4a\right]=-12a\)
\(4-b^2=4-\frac{a^2}{\left(a+1\right)^2}=\frac{4\left(a^2+2a+1\right)-a^2}{\left(a+1\right)^2}=\frac{3a^2+8a+4}{\left(a+1\right)^2}\)
\(\Rightarrow M=a+\frac{-12a\left(a+1\right)^2}{3a^2+8a+4}\)
\(=-\frac{9a^3+16a^2+8a}{3a^2+8a+4}\)
\(M=a+\frac{2a+b}{2-b}-\frac{2a-b}{2+b}+\frac{4a}{b^2-4}\)
\(=a-\frac{2a+b}{b-2}-\frac{2a-b}{2+b}+\frac{4a}{b^2-4}\)
\(=a-\frac{\left(2a+b\right)\left(2+b\right)+\left(2a-b\right)\left(b-2\right)}{\left(b-2\right)\left(b+2\right)}+\frac{4a}{b^2-4}\)
\(=a-\frac{4b\left(a+1\right)}{b^2-4}+\frac{4a}{b^2-4}\)
\(=a-\frac{4\frac{a}{a+1}\left(a+1\right)}{b^2-4}+\frac{4a}{b^2-4}\)
\(=a-\frac{4a}{b^2-4}+\frac{4a}{b^2-4}\)
\(=a\)
Hắc hắc :P Cứ làm từ từ sẽ thành công em ạ :D
\(=\frac{a+b+a-b}{a^2-b^2}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)
\(=\frac{2a\left(a^2+b^2\right)+2a\left(a^2-b^2\right)}{a^4-b^4}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)
\(=\frac{4a^3\left(a^4+b^4\right)+4a^3\left(a^4-b^4\right)}{a^8-b^8}+\frac{8a^7}{a^8+b^8}\)
\(=\frac{8a^7\left(a^8+b^8\right)+8a^7\left(a^8-b^8\right)}{\left(a^8-b^8\right)\left(a^8+b^8\right)}\)
\(=\frac{16a^{15}}{a^{16}-b^{16}}\)