Cho tam giác ABC vuông tại A , kẻ đường cao AH . Biết hai cạnh góc vuông là 7 và 8. Tính độ dài cạnh huyền và hình chiếu của các cạnh góc vuông trên cạnh huyền
Cứu mik vs !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ \(\left|x\right|\ge\frac{1}{\sqrt{2}}\)
Đặt \(\sqrt{2x^2-1}=t\ge0\)
<=> \(\left(3x+1\right)t=2t^2+x^2+\frac{3}{2}x-1\)
<=> \(2t^2-\left(3x+1\right)t+x^2+\frac{3}{2}x-1=0\)
\(\Delta_t=\left(x-3\right)^2\)
\(\Rightarrow\orbr{\begin{cases}t=\frac{2x-1}{2}\\t=\frac{x+2}{2}\end{cases}}\)
Phần còn lại bạn tự giải nhé
Cách khác, bình phương cũng ra nhé
ĐK \(k\left(k-p\right)\ge0\)
Để \(\sqrt{k^2-pk}\)là số nguyên
=> \(k\left(k-p\right)\)là số chính phương
Gọi UCLN của k và k-p là d
=> \(\hept{\begin{cases}k⋮d\\k-p⋮d\end{cases}}\)
=> \(p⋮d\)
Mà p là số nguyên tố
=> \(\orbr{\begin{cases}p=d\\d=1\end{cases}}\)
+ \(p=d\)=> \(k⋮p\)=> \(k=xp\left(x\in Z\right)\)
=> \(xp\left(xp-p\right)=p^2x\left(x-1\right)\)là số chính phương
=> \(x\left(x-1\right)\)là số chính phương
Mà \(x\left(x-1\right)\)là tích của 2 số nguyên liên tiếp
=> \(\orbr{\begin{cases}x=0\\x=1\end{cases}\Rightarrow}\orbr{\begin{cases}k=0\\k=p\end{cases}}\)
+\(d=1\)
=>\(\hept{\begin{cases}k=a^2\\k-p=b^2\end{cases}\left(a>b\right)}\)
=> \(p=\left(a-b\right)\left(a+b\right)\)
=> \(\hept{\begin{cases}a+b=p\\a-b=1\end{cases}}\)=> \(\hept{\begin{cases}a=\frac{p+1}{2}\\b=\frac{p-1}{2}\end{cases}}\)
=> \(k=\frac{\left(p+1\right)^2}{4}\)với p lẻ
Vậy \(k=0\)hoặc k=p hoặc \(k=\frac{\left(p+1\right)^2}{4}\forall plẻ\)
\(\sqrt{k^2-pk}\) là số nguyên dương => \(k^2-pk>0\Rightarrow k>p\)
Khang chú ý là sẽ không xảy ra k=0 hoặc k=p nhé!