Cho tam giác ABC vuông tại A coa AB > AC, đường cao AH. Trên cạnh AC lấy
điểm E sao cho AE = AB, gọi M là trung điểm của BE. Chứng minh HM là phân
giác của góc AHC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có :
EC // FD
\(EC=FD=\frac{4}{2}BC=\frac{1}{2}AD\)
=> ECDF là hình bình hành
\(EF=AB=\frac{1}{2}BC\)
=> ECDF là hình thoi
b, \(\widehat{A} =60^o\)
\(\Rightarrow D=120^o\)
\(\Rightarrow\widehat{EDF}=120^o:2=60^o\)
Mà BE // AD
==> BEDA là hình thang cân
c, Xét tam giác AFE : AF = EF --- > góc AFE
BEFA là hình thoi
==> AE là tia phân giác của \(\widehat{BAE}\Rightarrow\widehat{EAF}=30^o\)
Mà EDA = 60o
=> Trong tam giác EAD = 180o = \(\widehat{EAF}+\widehat{ADE}+\widehat{EAD}\)
\(=30^o+60^o+\widehat{EAD}\)
\(\Rightarrow\widehat{AED}=60^o\)
\(\frac{x-5}{3}-\frac{x-3}{5}=\frac{5}{x-3}-\frac{3}{x+5}\)
\(\left(x-5\right)5-3\left(x-3\right)=5\left(x+5\right)-3\left(x-3\right)\)
\(5x-25-3x+9=5x+25-3x+9\)
\(2x-16=2x+34\)
\(2x-2x=34+16\)
\(0=34+16\)
Vậy pt vô nghiệm
Ta có : \(a+b=2\)
\(\Rightarrow\)\(a = 2 -b\)
\(A = 2a^2 +3b^2 +3ab\)
\(A = 2a^2 + 3b. (a+b)\)
\(A = 2. (2-b)^2+3b. (2-b+b)\)
\(A = 2. ( b^2 -4b+4)+6b\)
\(A = 2b^2 -8b+8+6b\)
\(A = 2b^2 -2b+8\)
\(A = 2. ( b ^2 -b+4)\)
\(A=2. (b^2 -2.b.{1\over2}+({1\over2})^2-({1\over2})^2+4)\)
\(A = 2. [ (b -{1\over2})^2-{15\over4}]\)
\(A =2. (b-{1\over2})^2 + {15\over2}\)\(\ge\)\({15\over2}\)
\(Min A ={15\over2}\)\(\Leftrightarrow\)\(a = {3\over2};b={1\over2}\)
Ta có : a+b=2→b=2−a
→P=2a2+3b2+3ab=2a2+3b(a+b)=2a2+3b.2=2a2+6b=2a2+6(2−a)=2a2−6a+12
→P=2(a2−3a)+12
→P=2(a2−2a.32+94)+152
→P=2(a−32)2+152≥152
→GTNNP=152
Dấu = xảy ra khi a−32=0
Bạn tham khảo nha :
https://olm.vn/hoi-dap/detail/57202292544.html
Hok tốt !
Tham khảo link này: https://olm.vn/hoi-dap/detail/57202292544.html