Bài toán: Cho tam giác ABC vuông tại A có AB bằng 5cm, BC bằng 13cm. Kẻ AH vuông góc voiwsBC tại H. Tính độ dài các đoạn thẳng AC, AH, BH và CH.
B A C H ? ? ? ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{y+z-x}{x}=\frac{x+z-y}{y}=\frac{x+y-z}{z}\)
=> \(\frac{y+z-x}{x}+2=\frac{x+z-y}{y}+2=\frac{x+y-z}{z}+2\)
=> \(\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
Khi x + y + z = 0
=> x + y = -z
x + z = -y
y + z = -x
Khi đó B = \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=\frac{-xyz}{xyz}=-1\)
Khi x + y + z \(\ne\)0
=> \(\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)
Khi đó B = \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2.2.2=8\)
Vậy khi x + y + z = 0 => B = -1
khi x + y + z \(\ne\)0 =>B = 8
Sai đề rồi phải là kẻ \(AH\perp BC\left(H\in BC\right)\) nhé!
A B C H E F
a) Xét 2 Δ vuông: Δ AHB = Δ AHC (c.h-g.n) vì:
\(\hept{\begin{cases}AB=AC\left(gt\right)\\\widehat{ACB}=\widehat{ABC}\left(gt\right)\end{cases}}\)
=> \(BH=HC\)
b) Xét 2 Δ vuông: Δ BHF = Δ CHE (c.h-g.n) vì:
\(\hept{\begin{cases}HB=HC\left(p.a\right)\\\widehat{HBF}=\widehat{HCE}\left(gt\right)\end{cases}}\)
=> \(HE=HF\) => Tam giác HEF cân tại H
A C B H
Áp dụng định lý Pytago ta có:
\(AC^2=AH^2+HC^2=12^2+16^2=400\)
\(\Rightarrow AC=20\left(cm\right)\)
Và \(BH^2=AB^2-AH^2=13^2-12^2=25\)
\(\Rightarrow BH=5\left(cm\right)\Rightarrow BC=BH+HC=5+16=21\left(cm\right)\)
Vậy \(\hept{\begin{cases}AC=20\left(cm\right)\\BC=21\left(cm\right)\end{cases}}\)
A B D E C F
a/
\(AD=BD\) (1)
DE//BC; EF//AB => DEFB là hình bình hành => EF=BD (2)
Từ (1) và (2) => AD=EF (dpcm)
b/
AD=EF (cmt) (1)
EF//AB \(\Rightarrow\widehat{DAE}=\widehat{FEC}\) (góc đồng vị) (2)
EF//AB \(\Rightarrow\widehat{EFC}=\widehat{ABC}\) (góc đồng vị)
DE//BC \(\Rightarrow\widehat{ADE}=\widehat{ABC}\) (góc đồng vị)
\(\Rightarrow\widehat{ADE}=\widehat{EFC}\) (3)
Từ (1) (2) (3) \(\Rightarrow\Delta ADE=\Delta EFC\left(g.c.g\right)\)
c/
\(AD=BD\); DE//BC => AE=EC (trong 1 tg đường thẳng // với cạnh đáy và đi qua trung điểm 1 cạnh bên thì nó đi qua trung điểm cạnh còn lại)
*Tự vẽ hình
a) Có : DE//BC(GT)
EF//AB(GT)
=> BDEF là hình bình hành
=> BD=EF
Mà : AD=DB(GT)
=> AD=EF (đccm)
b) Ta có : AD=DB(GT)
DE//BC (GT)
=> DE là đường trung bình của tam giác ABC
=> AE=EC
Có : AE=EC(cmt)
EF//AB(GT)
=> EF là đường trung bình của tam giác ABC
=> BF=FC
Mà : BF=DE(BDEF-hình bình hành)
=> FC=DE
Xét tam giác ADE và EFC có :
AE=EC(cmt)
AD=EF(cm ý a)
DE=FC(cmt)
=> Tam giác ADE=EFC(c.c.c)
c) Đã chứng minh ở ý b
*Cách khác:
Giải:
Hình bạn tự vẽ nhé.
a) Ta có: BD // EF (vì AB /// EF)
=> Góc BDF = góc DFE (2 góc so le trong)
Vì DE // BC (gt)
nên góc EDF = góc BFD (2 góc so le trong)
Xét tam giác EDF và tam giác BDF có:
Góc BDF = góc DFE (chứng minh trên)
DF là cạnh chung
Góc EDF = góc BFD (chứng minh trên)
=> Tam giác DEF = tam giác FBD (g.c.g)
=> BD = EF ( 2 cạnh tương ứng) (đpcm)
Mà BD = AD (vì D là trung điểm của AB)
=> AD = EF (đpcm)
b) Ta có: AB // EF (gt)
=> Góc A = góc CEF (2 góc đồng vị)
Lại có: tam giác DEF = tam giác FBD (chứng minh trên)
=> Góc DEF = góc B (2 góc tương ứng) (1)
Mà DE // BC (gt)
=> Góc DEF = góc CFE (2 góc so le trong) (2)
Góc ADE = góc B (2 góc đồng vị)
Từ (1), (2) => Góc B = góc CFE
Mà góc B = góc ADE (chứng minh trên)
=> Góc ADE = góc CFE
Xét tam giác ADE và tam giác CEF có:
Góc CEF = góc A (chứng minh trên)
AD = EF (chứng minh trên)
Góc ADE = góc CFE (chứng minh trên)
=> Tam giác ADE = tam giác EFC (g.c.g) (đpcm)
c) Ta có: tam giác ADE = tam giác EFC (chứng minh trên)
=> AE = CE (2 cạnh tương ứng) (đpcm)
tự vẽ hình nhé.
Kẻ AD⊥BC={D}AD⊥BC={D}
a, ΔABDΔABDcó: ˆADB=90oADB^=90o
⇒AD=AB.sinB⇔AD=16.sin30=8√3(cm)⇒AD=AB.sinB⇔AD=16.sin30=83(cm)
ΔABDΔABDcó: ˆADB=90oADB^=90o
⇒AB2=AD2+BD2⇒AB2=AD2+BD2(định lý Py-ta-go)
hay 162=(8√3)2+BD2162=(83)2+BD2
BD2=64BD2=64
BD=8(cm)BD=8(cm)
ΔADCΔADCcó: ˆADC=90oADC^=90o
⇒AC2=AD2+CD2⇒AC2=AD2+CD2(định lý Py-ta-go)
hay 142=(8√3)2+CD2142=(83)2+CD2
CD2=4CD2=4
CD=2(cm)CD=2(cm)
Ta có: BC=CD+BD=2+8=10(cm)
A B C 16 cm 14 cm H 120
Kẻ BH \(\perp\)AC tại H
Ta có \(\widehat{BAH}=\widehat{A}-\widehat{BAC}=180^{\text{o}}-120^{\text{o}}=60^{\text{o}}\)
Lại có : tam giác AHB vuông tại H có \(\widehat{AHB}=\widehat{H}-\widehat{BAH}=90^{\text{o}}-60^{\text{o}}=30^{\text{o}}\)
=> \(AH=\frac{1}{2}AB=\frac{1}{2}.16=8\)(Vì trong tam giác vuông,cạnh đối diện với góc 30o bằng 1/2 cạnh huyền)
=>CH = AC + AH = 14 + 8 = 22 cm
Vì tam giác AHB vuông tại H => AH2 + HB2 = AB2
=> 82 + HB2 = 162
=> HB2 = 192
Lại có tam giác HBC vuông tại H
=> HC2 + HB2 = BC2
=> 222 + 192 = BC2
=> BC2 = 676
=> BC = 26 cm
Vậy BC = 26 cm
Áp dụng định lí Py ta go cho tam giác ABC ta được :
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow5^2+AC^2=13^2\Leftrightarrow AC^2=13^2-5^2=144\Leftrightarrow AC=12\)cm