Cho (O; R) và hai bán kính OA và OB vuông góc với nhau. Vẽ dây AM và BN bằng
nhau đồng thời cắt nhau tại C ở trong (O) (M, N thuộc cung nhỏ AB).
a) Chứng minh: OC ⊥ AB.
b) Chứng minh tứ giác ANMB là hình thang cân.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=x3+y3=(x+y)(x2-xy+y2)
=(x+y)2\(\ge\)0
Dấu "=" xảy ra khi x=-y
\(x^2-x-4=2\sqrt{\left(x-1\right)\left(1-x\right)}\)
\(\Leftrightarrow\left(x^2-x-4\right)^2=\left[2\sqrt{\left(x-1\right)\left(1-x\right)}\right]^2\)
\(\Leftrightarrow x^4-2x^3-7x^2+8x+16=8x-4x^2-4\)
\(\Leftrightarrow x^4-2x^3-7x^2+8x+16+4=8x-4x^2\)
\(\Leftrightarrow x^4-2x^3-7x^2+8x+20=8x-4x^2\)
\(\Leftrightarrow x^4-2x^3-7x^2+8x+20+4x^2=8x\)
\(\Leftrightarrow x^4-2x^3-3x^2+8x+20=8x\)
\(\Leftrightarrow x^4-2x^3-3x^2+8x+20-8x=0\)
\(\Leftrightarrow x^4-2x^3-3x^2+20=0\)
Vậy: phương trình vô nghiệm
Có gì không hiểu ib
#)Giải :
Áp dụng BĐT Cauchy :
\(\left(ab+c\right)\left(bc+a\right)\le\left(\frac{ab+c+bc+a}{2}\right)^2=\frac{\left(b+1\right)^2\left(c+a\right)^2}{4}\)
Tương tự với các cặp còn lại, ta được :
\(\left(bc+a\right)\left(ca+b\right)\le\frac{\left(c+1\right)^2\left(a+b\right)^2}{4}\)
\(\left(ab+c\right)\left(ca+b\right)\le\frac{\left(a+1\right)^2\left(b+c\right)^2}{4}\)
Nhân theo vế :
\(\left[\left(ab+c\right)\left(ca+b\right)\left(bc+a\right)\right]^2\le\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\frac{\left[\left(a+1\right)\left(b+1\right)\left(c+1\right)\right]^2}{64}\)
Mà : \(\left(a+1\right)\left(b+1\right)\left(c+1\right)\le\left(\frac{a+1+b+1+c+1}{3}\right)^3=8\)
Do đó \(\left[\left(ab+c\right)\left(ac+b\right)\left(bc+a\right)\right]^2\le\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2.\frac{8^2}{64}\)
Từ đó suy ra \(\left(ab+c\right)\left(ca+b\right)\left(bc+a\right)\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\Rightarrowđpcm\)