Giải phương trình sau
a,\(\sqrt{1+x}+\sqrt{8-x}+\sqrt{\left(x+1\right)\left(8-x\right)}=3\)
b, \(2\left(x^2+2\right)=5\sqrt{x^3+1}\)
c, \(x^2+x+3=3\sqrt{x^3+1}\)
d, \(2x^2+5x-1=7\sqrt{x^3-1}\)
e, \(\sqrt{2x+1}-\sqrt{3x}=x-1\)
f, \(\left(\sqrt{x+5}-\sqrt{x-2}\right)\left(1+\sqrt{x^2+7x+10}=3\right)\)
g, \(\sqrt{x^2-3x+2}-\sqrt{x+3}=\sqrt{x-2}-\sqrt{x^2+2x-3}\)
h, \(\sqrt{4x+1}-\sqrt{3x-2}=\frac{3+x}{5}\)
Ai giúp mình dù 1 câu cũng dc mình sẽ tick nếu đúng ai làm dc thì giỏi nha toán khó
\(\sqrt{1+x}+\sqrt{8-x}+\sqrt{\left(x+1\right)\left(8-x\right)}=3\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x+1\ge0\\8-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-1\\x\le8\end{cases}\Rightarrow}-1\le x\le8}\)
Đặt \(\sqrt{1+x}=a\Rightarrow x+1=a^2.\)
\(a+b+ab=3\)
và \(\sqrt{8-x}=b\Rightarrow8-x=b^2\)\(\left(a,b\ge0\right)\)
Cộng hai vế xuống ta có :
\(a^2+b^2=x+1+8-x=9\)
Theo phương trình ta lại có :
\(a+b+ab=3\)
Ta có hệ phương trình :
\(\hept{\begin{cases}a^2+b^2=9\\a+b+ab=3\end{cases}}\)
Giải hệ ra tính nốt nhá :)) Mình nghĩ bài này chỉ làm theo cách này ngắn nhất thôi