tìm x biết
a)\(\frac{3\sqrt{x}-5}{2}-\frac{2\sqrt{x}-7}{3}+1=\sqrt{x}\)
b)\(\sqrt{9x^2+45}-\frac{1}{12}\sqrt{16x^2+80}+3\sqrt{\frac{x^2+5}{16}}-\frac{1}{4}\sqrt{\frac{25x^2+125}{9}}=9\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Đặt P = ...
\(P=\sqrt{\left(\frac{1}{\sqrt{ab+a+2}}+\frac{1}{\sqrt{bc+b+2}}+\frac{1}{\sqrt{ca+c+2}}\right)^2}\)
\(\le\sqrt{3\left(\frac{1}{ab+1+a+1}+\frac{1}{bc+1+b+1}+\frac{1}{ca+1+c+1}\right)}\)
\(\le\sqrt{\frac{3}{4}\left(\frac{1}{ab+1}+\frac{1}{bc+1}+\frac{1}{ca+1}+\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)}\)
\(=\sqrt{\frac{3}{4}\left(\frac{a}{a+1}+\frac{1}{a+1}+\frac{b}{b+1}+\frac{1}{b+1}+\frac{c}{c+1}+\frac{1}{c+a}\right)}=\sqrt{\frac{9}{4}}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)
\(A=\frac{3}{x^4-x^3+x-1}-\frac{1}{x^4+x^3-x-1}-\frac{4}{x^5-x^4+x^3-x^2+x-1}\)
\(=\frac{3}{\left(x-1\right)\left(x^3+1\right)}-\frac{1}{\left(x+1\right)\left(x^3-1\right)}-\frac{4}{\left(x-1\right)\left(x^4+x^2+1\right)}\)
\(=\frac{3}{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}-\frac{1}{\left(x+1\right)\left(x-1\right)\left(x^2+x+1\right)}-\frac{4}{\left(x-1\right)\left(x^4+x^2+1\right)}\)
\(=\left[\frac{3}{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}-\frac{1}{\left(x+1\right)\left(x-1\right)\left(x^2+x+1\right)}\right]-\frac{4}{\left(x-1\right)\left(x^4+x^2+1\right)}\)
\(=\left[\frac{3\left(x^2+x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)}-\frac{x^2-x+1}{\left(x+1\right)\left(x-1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)}\right]-\frac{4}{\left(x-1\right)\left(x^4+x^2+1\right)}\)\(=\frac{3x^2+3x+3-x^2+x-1}{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)}-\frac{4}{\left(x-1\right)\left(x^4+x^2+1\right)}\)
\(=\frac{2x^2+4x+2}{\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)}-\frac{4}{\left(x-1\right)\left(x^4+x^2+1\right)}\)
\(=\frac{2x^2+4x+2}{\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)}-\frac{4\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)}\)
\(=\frac{2x^2+4x+2-4x-4}{\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)}=\frac{2x^2-2}{\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)}=\frac{2\left(x^2-1\right)}{\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)}\)
\(=\frac{2\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)}=\frac{2}{x^4+x^2+1}\)
\(\Rightarrow A=\frac{2}{x^4+x^2+1}\left(x\ne\pm1\right)\)
Ta có: \(x^4+x^2+1=\left(x^2\right)^2+2.x^2.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x^2+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
Vậy A > 0 với mọi \(x\ne\pm1\)
Đặt \(a=2x;\sqrt[3]{2-8x^3}=t\)
=> \(\hept{\begin{cases}\left(2a-1\right)t=a\\t^3+a^3=2\end{cases}}\)
<=>\(\hept{\begin{cases}a+t=2at\\\left(a+t\right)^3-3at\left(a+t\right)=2\end{cases}}\)=> \(\hept{\begin{cases}a+t=2at\\\left(a+t\right)^3-\frac{3}{2}\left(a+t\right)^2-2=0\end{cases}}\)
=> \(\hept{\begin{cases}a+t=2\\at=1\end{cases}}\)
=> \(a=t=1\)
=> \(x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\)
a) x=8 hoặc x=-1
Đặt ẩn phụ
g) x=1 hoặc x=2 hoặc x=-3
Phân tích thành nhân tử rồi xét giá trị
Từ D hạ DI vuông góc BC tại I. Có ngay I là trung điểm cạnh BC và AI = BI = CI
Áp dụng ĐL Pytagoras có DH2 + AH2 = DI2 + IH2 + AI2 - IH2 = DI2 + BI2 = DB2 (đpcm).