Cho tam giác ABC nội tiếp (O) có 3 đường cao AD;BE;CF đồng quy tại H;CH cắt (O) tại G; GD cắt (O) tại K.CM:AK đi qua trung điểm M của DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+\sqrt{4-x^2}=2\)
\(\Leftrightarrow\sqrt{4-x^2}=2-x\)
\(\Leftrightarrow\left(\sqrt{4-x^2}\right)^2=\left(2-x\right)^2\)
\(\Leftrightarrow4-x^2=4-4x+x^2\)
\(\Leftrightarrow-x^2=-4x+x^2\)
\(\Leftrightarrow x^2-4x+x^2=0\)
\(\Leftrightarrow2x^2-4x=0\)
\(\Leftrightarrow2x\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
a) Gọi AD,AE lần lượt là đường kính của (O1);(O2), M là trung điểm đoạn DE
Đường thẳng vuông góc với AM tại A cắt (O1);(O2) lần lượt tại P,Q (khác A)
Khi đó A là trung điểm của PQ. Thật vậy:
Từ AE,AF là đường kính của (O1);(O2) suy ra ^ABD = ^ABE = ^APD = ^AQE = 900
=> D,B,E thẳng hàng và DP // EQ. Do đó tứ giác PQED là hình thang vuông
Từ đó AM // PD // QE. Mà M là trung điểm DE nên A là trung điểm PQ.
b) Từ câu a dễ nhận ra độ dài DE không đổi. Hạ EH vuông góc với DP tại H
Khi đó PQ = EH < DE = const. Dấu "=" xảy ra khi và chỉ khi cắt tuyến PAQ // DE.
c) Ta có BP là một dây của đường tròn (O1) => BP < 2R1. Tương tự BP < 2R2
Suy ra CBPQ = BP + BQ + PQ < DE + 2R1 + 2R2 = CDAE = const
Dấu "=" xảy ra khi và chỉ khi cát tuyến PAQ // DE.
d) Hạ PK,QL thứ tự vuông góc với đường thẳng AB. Ta có:
2SBPQ = AB(PK + QL) < AB.PQ < AB.DE = 2SDAE = const => SBPQ < SDAE
Dấu "=" xảy ra khi và chỉ khi cát tuyến PAQ // DE.