cho góc nhọn \(\alpha\), biết \(\sin\alpha.\tan\alpha=\frac{3}{2}\). tìm giá trị đúng của \(\cos\alpha\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(8\sqrt{3x^2-x+5}=24\)
Bình phương 2 vế lên, ta có:
\(\Leftrightarrow64\left(3x^2-x+5\right)=576\)
\(\Leftrightarrow192x^2-64x+320=576\)
\(\Leftrightarrow192x^2-64x+320-576=0\)
\(\Leftrightarrow192x^2-64x-256=0\)
\(\Leftrightarrow64\left(3x^2-x-4\right)=0\)
\(\Leftrightarrow64\left(3x^2+3x-4x-4\right)=0\)
\(\Leftrightarrow64\left[3x\left(x+1\right)-4\left(x+1\right)\right]=0\)
\(\Leftrightarrow64\left(x+1\right)-\left(3x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\3x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{4}{3}\end{cases}}\)
Vậy nghiệm phương trình là: \(\left\{-1;\frac{4}{3}\right\}\)
\(Y=\sqrt{1-x}+\sqrt{1+x}\ge\sqrt{1-x+1+x}=\sqrt{2}\)
Dấu "=" xảy ra khi \(\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
\(Y=\sqrt{1-x}+\sqrt{1+x}\le\frac{1-x+1+1+x+1}{2}=2\)
Dấu "=" xảy ra khi \(x=0\)
\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\Leftrightarrow\frac{1}{1+a}=\frac{b}{1+b}+\frac{c}{1+c}\ge\frac{2\sqrt{bc}}{\sqrt{\left(1+b\right)\left(1+c\right)}}\)
Tương tự: \(\frac{1}{1+b}\ge\frac{2\sqrt{ca}}{\sqrt{\left(1+c\right)\left(1+a\right)}};\frac{1}{1+c}\ge\frac{2\sqrt{ab}}{\sqrt{\left(1+a\right)\left(1+b\right)}}\)
Nhân theo vế các BĐT vừa đánh giá (2 vế đều khác 0) ta được:
\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Rightarrow8abc\le1\Rightarrow abc\le\frac{1}{8}\). Dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{1}{2}.\)
\(E=\left(x^2+y^2\right)+\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+2\left(\frac{x}{y}+\frac{y}{x}\right)\ge4+\frac{4}{x^2+y^2}+2.2=9\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{\sqrt{2}}\)
\(a,ĐKXĐ:\hept{\begin{cases}x^2-\sqrt{x}\ne0\\x\ge0\\\sqrt{x}+1\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne1\\x>0\end{cases}}\)
\(b,A=\frac{1}{x^2-\sqrt{x}}:\frac{\sqrt{x}+1}{x\sqrt{x}+x+\sqrt{x}}\)
\(=\frac{1}{x^2-\sqrt{x}}\cdot\frac{x\sqrt{x}+x+\sqrt{x}}{\sqrt{x}+1}\)
\(=\frac{1}{\sqrt{x}\left(\sqrt{x}^3-1\right)}\cdot\frac{\sqrt{x}\left(x+\sqrt{x}+1\right)}{\sqrt{x}+1}\)
\(=\frac{1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\frac{\left(x+\sqrt{x}+1\right)}{\sqrt{x}+1}\)
\(=\frac{1}{x-1}\)
\(a,ĐKXĐ:x\ne0\)
\(b,A=\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}\)
\(=\sqrt{x^2-1+2\sqrt{x^2-1}+1}-\sqrt{x^2-1-2\sqrt{x^2-1}+1}\)
\(=\sqrt{\left(\sqrt{x^2-1}+1\right)}-\sqrt{\left(\sqrt{x^2-1}-1\right)}\)
@.@
Secret PersonKo biết thì đừng làm
\(ĐKXĐ:x\ne0\).Vậy thì nếu \(x=0,5\)thì \(\sqrt{x^2-1}=\sqrt{0,25-1}=\sqrt{-0,75}\)(XÁc định kiểu j)
\(b^2=x^2\left(1+y^2\right)+y^2\left(1+x^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
\(=x^2+y^2+2x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
Mà \(a^2=x^2+y^2+2x^2y^2+1+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
\(\Leftrightarrow\)\(2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=a^2-\left(x^2+y^2+2x^2y^2\right)-1\)
\(\Rightarrow\)\(b^2=x^2+y^2+2x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
\(=x^2+y^2+2x^2y^2+a^2-\left(x^2+y^2+2x^2y^2\right)-1=a^2-1\)\(\Leftrightarrow\)\(b=\sqrt{a^2-1}\) ( do a2>1 )
Cm: \(a^2>1\)
Có: \(1< \left(1+x^2\right)\left(1+y^2\right)\)\(\Leftrightarrow\)\(1< xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)\(\Leftrightarrow\)\(a^2>1\)
help me please