vào đây nha
ღᏠᎮღ🆃🆄ấ🅽ঔ 🅽🅰🅼ঌ - Trang của ღᏠᎮღ🆃🆄ấ🅽ঔ 🅽🅰🅼ঌ - Học toán với OnlineMath
hi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-3y^2=2xy\)
\(\Leftrightarrow\left(x^2-y^2\right)-\left(2xy+2y^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-2y\left(x+y\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)
Mà \(x+y\ne0\Rightarrow x-2y=0\Rightarrow x=2y\)
Ta có:\(S=\frac{2x-3y}{4x+5y}=\frac{4y-3y}{8y+5y}=\frac{1}{13}\)
Co \(\left(\sqrt{x^2+1}-x\right)\left(\sqrt{x^2+1}+x\right)=x^2+1-x^2=1\) (1)
va \(\left(\sqrt{y^2+1}-y\right)\left(\sqrt{y^2+1}+y\right)=y^2+1-y^2=1\) (2)
Theo de bai va tu (1) ,(2) =>\(\sqrt{x^2+1}+x=\sqrt{y^2+1}-y\) (3)
va \(\sqrt{y^2+1}+y=\sqrt{x^2+1}-x\) (4)
Cong (3) voi (4) ve theo ve duoc \(2\left(x+y\right)=\sqrt{x^2+1}-\sqrt{x^2+1}+\sqrt{y^2+1}-\sqrt{y^2+1}=0\)
Suy ra x+y=0 DPCM
Study well
\(\sqrt[3]{\left(1-\sqrt{3}\right)\left(4-2\sqrt{3}\right)}=\sqrt[3]{\left(1-\sqrt{3}\right)\left(\sqrt{3}-1\right)^2}\)=\(\sqrt[3]{\left(1-\sqrt{3}\right)^3}\)=1-\(\sqrt{3}\)
\(\sqrt[3]{\left(1-\sqrt{5}\right)\left(6-2\sqrt{5}\right)}=\sqrt[3]{\left(1-\sqrt{5}\right)\left(\sqrt{5}-1\right)^2}\)=\(\sqrt[3]{\left(1-\sqrt{5}\right)^3}\)=1-\(\sqrt{5}\)
Ta thấy \(\sqrt{5}>\sqrt{3}\)nên 1-\(\sqrt{3}\)>\(1-\sqrt{5}\)
Vậy \(\sqrt[3]{\left(1-\sqrt{3}\right)\left(4-2\sqrt{3}\right)}\)>\(\sqrt[3]{\left(1-\sqrt{5}\right)\left(6-2\sqrt{5}\right)}\)
a) ĐKXĐ: \(x;y>0\)
Ta có:\(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\)
\(\Rightarrow\frac{4y}{4xy}+\frac{4x}{4xy}=\frac{xy}{4xy}\)
\(\Rightarrow4x+4y-xy=0\)
\(\Rightarrow x\left(4-y\right)=-4y\)
\(\Rightarrow x=\frac{-4y}{4-y}=\frac{-4\left(y-4\right)-16}{-\left(y-4\right)}\)
\(\Rightarrow x=4-\frac{16}{4-y}\)
Để x nguyên dương =>\(\hept{\begin{cases}\frac{16}{4-y}< 0\\\left(4-y\right)\inƯ\left(16\right)\end{cases}}\)
\(\Rightarrow4-y\in\left\{\pm1;\pm2;\pm4;\pm8;\pm16\right\}\)
Tìm nốt y và thay vào tìm ra x
a/ \(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\)
Không mất tính tổng quát giả sử: \(x\ge y\)
\(\frac{1}{4}=\frac{1}{x}+\frac{1}{y}\le\frac{2}{y}\)
\(\Leftrightarrow0< y\le8\)
\(\Rightarrow y=\left\{1;2;3;4;5;6;7;8\right\}\)làm nốt