Bài 2: Cho (O;R) và (O';R') tiếp xúc ngoài tại A. Kẻ dây cung AM của (O) và dây cung AN của (O') sao cho AM vuông góc với AN
a) C/m: OM//ON
b) xác định vị trú của AM và AN để S tứ giác OMNO' lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
O C D E F P A B
(Điểm P nằm trong hay nằm ngoài (O;2R) cũng không vấn đề gì nhé, mình vẽ như vậy cho hình đỡ to)
a) Xét hai đường tròn (O;R) và (P) cắt nhau tại hai điểm E,F. Suy ra OP là trung trực của EF
Tương tự OP là trung trực của CD. Do đó CD và EF có chung đường trung trực. Vậy CD // EF (đpcm).
b) Có OA = R; OC = 2R, A thuộc OC nên A là trung điểm OC
Mà OC là một dây của (P) nên PA vuông góc OA. Tương tự PB vuông góc với OB
Vậy PA,PB là hai tiếp tuyến của (O;R) (đpcm).