K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2020

Bài 2 : 

vì BE vuông góc BD nên BE là đường phân giác ngoài của tam giác ABC.
theo tính chất đường phân giác (ngoài) ta có :

AEEB=ECBCAEEB=ECBC

⇒⇒ CE=AB.BCABCE=AB.BCAB

⇒⇒ CE=AE.23CE=AE.23

⇒⇒ 3CE=(CE+AC).23CE=(CE+AC).2

⇒⇒ 3CE=2CE+2AC3CE=2CE+2AC

⇒⇒ CE=2AC=6(cm) 

Bài 1: Giải

Nếu cạnh lớn nhất của tam giác đã cho là cạnh bé nhất của tam giác đồng dạng với nó thì ta có tỉ số đồng dạng đã cho là: (Gọi tạm tam giác có cạnh 12,16,18 m là tgiac 1, tgiac mới là tgiac 2)

k=Δ1Δ2=1218=23k=Δ1Δ2=1218=23

Chu vi của tam giác 1 là:

12+16+18=46(m)12+16+18=46(m)

⇒⇒ Chu vi của tam giác 2 là: 46:23=69(m)46:23=69(m)

Cạnh thứ hai của tam giác đồng dạng (2) là:

16:23=24(m)16:23=24(m)

Cạnh lớn nhất của tam giác đồng dạng (2) đó là:

69−24−18=27(m

Bài 3 tớ k bt lm 

15 tháng 4 2020

copy mạng nhớ ghi nguồn nhé bạn =))))

học tốt bro :))

~~

15 tháng 4 2020

Gọi chiều dài là x (m) => chiều rộng= x-20 (m)

Ta có phương trình: (x+x-20)*2=240 

            <=> 2x-20=120

             => x=70

Chiều dài =70 (m), chiều rộng= 50(m)

=> S=70*50=3500 ( m^2)

15 tháng 4 2020

 ơi STN = số thứ nhất 

      STH = SỐ THỨ 2 NHÉ

       STB = SỐ THỨ 3 NHA

Chứng minh rằng nếu \(x>0\)thì \(\frac{1}{x}-\frac{1}{x+1}>0\):

Ta có : \(\frac{1}{x}-\frac{1}{x+1}>0\Rightarrow\frac{1}{x}>\frac{1}{x+1}\)

\(\Rightarrow x+1>x\)(đúng)

Học tốt

Bài 1: Tìm hiểu thuật toán sau rồi dựa vào đó để viết chương trình PSACALBƣớc 1: Nhập n là số lương số thực sẽ nhập từ bàn phím:1.1. Dem<-0;1.2. Sum<-0.Bƣớc 2: Trong khi dem< N thì:2.1. Nhập giá trị số thực x từ bàn phím;2.2. Sum <- Sum + x;2.3. Dem<-Dem +1;Bƣớc 3: TB<- Sum/N;Bƣớc 4. Đưa thông báo ra màn hình, rồi kết thúc.Bài 2: Nhập chương trình sau vào máy tính chạy thử và cho biết kết quả với...
Đọc tiếp

Bài 1: Tìm hiểu thuật toán sau rồi dựa vào đó để viết chương trình PSACAL
Bƣớc 1: Nhập n là số lương số thực sẽ nhập từ bàn phím:
1.1. Dem<-0;
1.2. Sum<-0.
Bƣớc 2: Trong khi dem< N thì:
2.1. Nhập giá trị số thực x từ bàn phím;
2.2. Sum <- Sum + x;
2.3. Dem<-Dem +1;
Bƣớc 3: TB<- Sum/N;
Bƣớc 4. Đưa thông báo ra màn hình, rồi kết thúc.
Bài 2: Nhập chương trình sau vào máy tính chạy thử và cho biết kết quả với các trường hợp N = 5;
45; 55; 67; 91
Program So_nguyen_to;
Uses crt;
Var n, i: Integer;
BEGIN
clrscr;
Write(„Nhap vao mot so nguyen : „); Readln(n);
If n <=1 then Writeln(„Khong la so nguyen to‟);
else

Begin
i: = 2;
While ( n mod I <>0) do i: = i+1;
If I = n then writeln(n,; la so nguyen to‟)
else writeln(n,‟ khong la so nguyen to‟);
end;
Writeln („Nhan phim bat ky de thoat chuong trinh‟);
Readln;
END.

0
15 tháng 4 2020

\(a\left(b+c\right)^2\left(b-c\right)+b\left(c+a\right)^2\left(c-a\right)+c\left(a+b\right)^2\left(a-b\right)\)

\(=a\left(b+c\right)^2-b\left(c+a\right)^2\left[\left(b-c\right)+\left(a-b\right)\right]+c\left(a+b\right)^2\left(a-b\right)\)

\(=a\left(b+c\right)^2\left(b-c\right)-b\left(c+a\right)^2\left(b-c\right)-b\left(c+a\right)^2\left(a-b\right)+c\left(a+b\right)^2\left(a-b\right)\)

\(=\left(b-c\right)\left[a\left(b+c\right)^2-b\left(c+a\right)^2\right]-\left(a-b\right)\left[b\left(c+a\right)^2-c\left(b+c\right)^2\right]\)

\(=\left(b-c\right)\left(ab^2+ac^2-bc^2-ba^2\right)-\left(a-b\right)\left(bc^2+ba^2-ca^2-cb^2\right)\)

\(=\left(b-c\right)\left[-ab\left(a-b\right)+c^2\left(a-b\right)\right]-\left(a-b\right)\left[-bc\left(b-c\right)+a^2\left(b-c\right)\right]\)

\(=\left(b-c\right)\left(c^2-ab\right)\left(a-b\right)-\left(a-b\right)\left(a^2-bc\right)\left(b-c\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(c^2-ab-a^2+bc\right)\)

\(=\left(a-b\right)\left(b-c\right)\left[\left(c-a\right)\left(a+c\right)+b\left(c-a\right)\right]\)

\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)

15 tháng 4 2020

a) Xét \(\Delta\)ABC có: M; N là trung điểm của AB; AC 

=> MN là đường trung bình của \(\Delta\)ABC  (1)

=> MN//BC 

=> BCNM là hình thang 

b) (1) => MN //= \(\frac{1}{2}\) BC  mà BP = \(\frac{1}{2}\)BP  va B; P; C thẳng hàng  ( vì P là trung điểm BC ) 

=> MN// = BP => MNPB là hình bình hành 

c) MN // BC => MN // HP => MNHP là hình thang 

(b) => ^MNP = ^MBP => ^MNP = ^MBH (2) 

Lại có: ^NMH = ^MHB ( so le trong )  ( 3) 

Mặt khác: \(\Delta\)AHB vuông tại H có HM là trug tuyến đáy AB 

=> HM = \(\frac{1}{2}\)AB = BM 

=> \(\Delta\)MHB cân tại M => ^MBH = ^MHB  (4) 

Từ (2) ; (3) ; (4) => ^NMH = ^MNP 

=> MNPH là hình thang cân 

b) Điều kiện để HPNM là hình chữ nhật: 

Ta có: HPNM là hình thang cân

=> HPNM là hình chữ nhật  MH vuông góc BC 

Mặt khác ta có: AH vuông góc BC 

=> A; M; H thẳng hàng mà A; M; B thẳng hàng 

=> H trùng B 

=> Tam giác ABC vuong tại B.

15 tháng 4 2020

a) tam giác ABC có M ; N là trug điểm của AB ; AC

=) MN là trug bình của TG ABC (1)

=) MN/BC

=) BCNM là hình thag 

(mik chia ra nhé)