Cho x, y>0 thỏa mãn x+y=1.
Tìm GTNN của biểu thức: \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{b}=t\)
Ta có:\(t^2+\frac{1}{t^2}+4\ge3\left(t+\frac{1}{t}\right)\)
\(\Leftrightarrow t^2+\frac{1}{t^2}+4-3t-\frac{3}{t}\ge0\)
\(\Leftrightarrow\left(t^2-2t+1\right)+\left(\frac{1}{t^2}-\frac{3}{t}+1\right)+2-t-\frac{1}{t}\ge0\)
\(\Leftrightarrow\left(t-1\right)^2+\left(\frac{1}{t}-1\right)^2+1-t-\frac{1}{t}+t\cdot\frac{1}{t}\ge0\)
\(\Leftrightarrow\left(t-1\right)^2+\left(\frac{1}{t}-1\right)^2+\left(t-1\right)\left(\frac{1}{t}-1\right)\ge0\)
Đặt \(\left(t-1;\frac{1}{t}-1\right)\rightarrow\left(p,q\right)\)
Ta có:
\(p^2+q^2+pq\ge0\)
\(\Leftrightarrow\left(p^2+pq+\frac{q^2}{4}\right)+\frac{3q^2}{4}\ge0\)
\(\Leftrightarrow\left(p+\frac{q}{2}\right)^2+\frac{3q^2}{4}\ge0\) *luôn đúng*
a+b=-1; a.b=\(\frac{-1}{4}\) => a2+b2=(a+b)2-2ab=1+\(\frac{1}{2}=\frac{3}{2}\)
a7+b7=(a3+b3)(a4+b4)-a3b3(a+b) (1)
a3+b3=(a+b)((a+b)2-ab))=-1(1+\(\frac{1}{4}\))=\(\frac{-5}{4}\)
a4+b4=(a2+b2)2-2a2b2=\(\left(\frac{3}{2}\right)^2-2.\left(\frac{-1}{4}\right)^2=\frac{17}{8}\)
Thay vào (1) P=\(\frac{-5}{4}.\frac{17}{8}-\left(\frac{-1}{4}\right)^3.\left(-1\right)=\frac{-171}{64}\)
mầy câu 1;3;;4;5 cách làm nhu nhau(nhân liên hop hoac bình phuong lên)
1.
\(DK:x\in\left[-4;5\right]\)
\(\Leftrightarrow\sqrt{x-5}+\left(\sqrt{x+4}-3\right)=0\)
\(\Leftrightarrow\sqrt{x-5}+\frac{x-5}{\sqrt{x+4}+3}=0\)
\(\Leftrightarrow\sqrt{x-5}\left(1+\frac{\sqrt{x-5}}{\sqrt{x+4}+3}\right)=0\)
Vi \(1+\frac{\sqrt{x-5}}{\sqrt{x+4}+3}>0\)
\(\Rightarrow\sqrt{x-5}=0\)
\(x=5\left(n\right)\)
Vay nghiem cua PT la \(x=5\)
2.
\(DK:x\ge0\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}-3\right)^2}=1\)
\(\Leftrightarrow|\sqrt{x}-2|+|\sqrt{x}-3|=1\)
Ta co:
\(|\sqrt{x}-2|+|\sqrt{x}-3|=|\sqrt{x}-2|+|3-\sqrt{x}|\ge|\sqrt{x}-2+3-\sqrt{x}|=1\)
Dau '=' xay ra khi \(\left(\sqrt{x}-2\right)\left(3-\sqrt{x}\right)\ge0\)
TH1:
\(\hept{\begin{cases}\sqrt{x}-2\ge0\\3-\sqrt{x}\ge0\end{cases}\Leftrightarrow4\le x\le9\left(n\right)}\)
TH2:(loai)
Vay nghiem cua PT la \(x\in\left[4;9\right]\)
\(\sqrt{3b\left(a+2b\right)}\le\frac{3b+\left(a+2b\right)}{2}\); \(\sqrt{3a\left(b+2a\right)}\le\frac{3a+\left(b+2a\right)}{2}\)
=> M\(\le a\frac{a+5b}{2}+b\frac{5a+b}{2}\)=\(\frac{a^2+b^2+10ab}{2}\)\(\le\frac{6\left(a^2+b^2\right)}{2}\)( áp dụng 2ab\(\le a^2+b^2\))=3(a2+b2)\(\le\)6
dấu = khi a =b =1
Cho mình hỏi bài này sử dụng bđt cauchy trực tiếp luôn có được không?