dựng góc nhọn alpha biết
Sin a = 3/7
Cos a = 5/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}.\)
\(=\sqrt{13+30\sqrt{2+\sqrt{\left(2\sqrt{2}\right)^2+2.2\sqrt{2}+1}}}\)
\(=\sqrt{13+30\sqrt{2+\sqrt{\left(2\sqrt{2}+1\right)^2}}}\)
\(=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}\)
\(=\sqrt{13+30\sqrt{\left(\sqrt{2}+1\right)^2}}\)
\(=\sqrt{13+30\left(\sqrt{2}+1\right)}\)
\(=\sqrt{13+30\sqrt{2}+30}=\sqrt{43+30\sqrt{2}}\)
kẻ đường cao BH
BC2=BH2+HC2(pytago)
BH=AB.sin60; HC=AC-AH=AC-ABcos60 thay vào trên
BC2=(AB.sin60)2+(AC-ABcos60)2=AB2.sin260+AC2-2AB.ACcos60+AB2.cos260=AB2+AC2-2AB.AC.\(\frac{1}{2}\)=AB2+AC2-AB.AC
A B H C
kẻ BH _|_ AC (H thuộc AC)
xét tam giác ABH có : góc A + góc ABH + góc AHB = 180 (ĐL)
Có : góc A = 60 (gt)
góc AHB = 90 do BH _|_ AC (Cách vẽ)
=> góc ABH = 180 - 90 - 60 = 30
xét tam giác ABH vuông tại H có góc ABH = 30
=> AH = 1/2.AB (đl)
=> AB = 2AH (1)
xét tam giác ABH vuông tại H
=> AB^2 = AH^2 + BH^2 (Đl PTG)
=> BH^2 = AB^2 - AH^2 (2)
xét tam giác BHC vuông tại H :
=> BC^2 = HC^2 + BH^2 (đl PTG)
=> BC^2 = BH^2 + (AC - AH)^2
=> BC^2 = BH^2 + AC^2 - 2AH.AC + AH^2
thay (1)(2) vào ta được :
BC^2 = (AB^2 - AH^2) + AC^2 - AB.AC + AH^2
=> BC^2 = AB^2 - AH^2+ AC^2 - AB.AC + AH^2
=> BC^2 = AB^2 + AC^2 - AB.AC