K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2019

Đề bài bị thiếu.

ĐK x >=5.

\(pt\Leftrightarrow\frac{\sqrt{x^2}}{\sqrt{x}\left(\sqrt{x}-\sqrt{x-5}\right)}+\frac{1}{\sqrt{x}-\sqrt{x-5}}=0\)

<=> \(\frac{\sqrt{x}}{\sqrt{x}-\sqrt{x-5}}+\frac{1}{\sqrt{x}-\sqrt{x-5}}=0\) 

<=> \(\frac{\sqrt{x}+1}{\sqrt{x}-\sqrt{x-5}}=0\)phương trình vô nghiệm.

6 tháng 10 2019

Sử dụng BDT Cauchy dễ dàng CM được: \(ab+bc+ac\le a^2+b^2+c^2=3\)

->\(a+b+c\ge3\)(1)

Tiếp  tục sử dụng BDT Cauchy CM được:\(a^2+b^2+c^2+3\ge2a+2b+2c\Leftrightarrow a^2+b^2+c^2=3\ge a+b+c\)(2)

Từ (1),(2) -> a+b+c=3. Dấu = xảy ra khi a=b=c=1. Thay vào ta tính được B=1

7 tháng 10 2019

a, b, c là số thực sao có thể sử dụng bất đẳng thức Cauchy đc???

Em tham khảo bài làm : Câu hỏi của Cao Chi Hieu - Toán lớp 9 - Học toán với OnlineMath

6 tháng 10 2019

\(A=\frac{\left(x+4\right)\left(x+9\right)}{x}\left(x>0\right)\)

\(\Leftrightarrow Ax=x^2+13x+36\)

\(\Leftrightarrow x^2+x\left(13-A\right)+36=0\left(1\right)\)

Đế pt có nghiệm \(\Leftrightarrow\Delta\ge0\)

\(\Leftrightarrow\left(13-A\right)^2-4.36\ge0\)

\(\Leftrightarrow\left(13-A\right)^2-12^2\ge0\)

\(\Leftrightarrow\left(13-A-12\right)\left(13-A+12\right)\ge0\)

\(\Leftrightarrow\left(1-A\right)\left(25-A\right)\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}A\le1\\A\ge25\end{cases}}\)

Với \(A=25\) ta tìm được \(x=6\)

Vậy GTNN của A là 25 khi \(x=6\)

Chúc bạn học tốt !!!

6 tháng 10 2019

1/AK2 hay 4/AK2 vậy cậu