Tìm a, b thuộc N sao cho a2 + 3b và b2 + 3a đều là số chính phương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Để hàm số nghịch biến \(\Leftrightarrow\hept{\begin{cases}m< 0\\m\ne0\end{cases}\Leftrightarrow m< 0}\)
b ) Đồ thị hàm số đi qua điểm M (3 ; 2) nên ta có :
\(2=m.3+1\Leftrightarrow3m=1\Leftrightarrow m=\frac{1}{3}\)
Khi đó hàm số đã cho có dạng : \(y=\frac{1}{3}x+1\)
- Nếu \(x=0\Rightarrow y=1\) . Ta có điểm A ( 0;1) \(\in Oy\)
- Neus \(y=0;x=-3\) . Ta có điểm B \(\left(-3;0\right)\in Ox\)
Đường thẳng đi qua 2 điểm A , B là đò thị của hàm số \(y=\frac{1}{3}x+1\)
c ) Gọi điểm \(N\left(x_o;y_0\right)\) là điểm cố định mà với mọi giá trị của m
Khi đó ta có : \(mx_o+1=y_o\) , vơi mọi m
\(\Leftrightarrow mx_o+\left(1-y_0\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x_0=0\\1-y_0=0\end{cases}\Leftrightarrow\hept{\begin{cases}x_0=0\\y_0=1\end{cases}}}\)
Vậy N ( 0 ; 1) là điểm cố định của đồ thị hàm số đã cho
a ) Vì OP // AC (gt)
\(\Rightarrow\widehat{O_2}=\widehat{C_1}\) ( cặp góc so le trong ) (1)
\(\widehat{A}_2=\widehat{O}_1\) ( cặp goc đồng vị ) (2)
Xét \(\Delta OAC\) có : OA = OC (gt)
\(\Rightarrow\Delta OAC\) cân tại O
\(\Rightarrow\widehat{A}_2=\widehat{C}_1\) (3)
Từ (1) ; (2) ; (3) suy ra :
\(\widehat{O}_1=\widehat{O}_2\)
Xét \(\Delta OBP\) và \(\Delta OCP\) có :
OP : cạnh chung
\(\widehat{O}_1=\widehat{O}_2\left(cmt\right)\)
OB = OC (gt)
\(\Rightarrow\Delta OBP=\Delta OCP\left(cmt\right)\)
\(\Rightarrow\widehat{OBP}=\widehat{OCP}\)
Mà : \(\widehat{OCP}=90^o\) ( gt)
\(\Rightarrow\widehat{OBP}=90^o\)
\(\Rightarrow\) PB là tiếp tuyến của đt (O)
Chúc bạn học tốt !!!