Tam giác vuông có độ dài cạnh huyền là 6 và chiều cao ứng với cạnh huyền là √8. Tìm độ dài hai cạnh góc vuông?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt\(\sqrt{2-x}=a;\sqrt{2+x}=b.\)
Ta có \(a^2+b^2=4;a+b+ab=2\)
Giải hệ pt
x2+x-1=0 => x2 =1- x
x8 = (x2)4 = (1-x)4 = (x2 -2x +1)2 = (2-3x)2 = x2 +8x2 -12x +4 = x2 + 8(1-x) -12x +4 = x2 -20x +12
=> x8 +10x +13 = x2 -10x +25 = (x-5)2 => \(\sqrt{x^8+10x+13}=\left|x-5\right|\)
dễ thấy với x \(\ge5=>x^2+x-1>0\) nên 2 nghiệm x1;x2 đều nhỏ hơn 5
=> P(x1) +P(x2) = x1 +5- x1 + x2+ 5-x2 = 10
có một cách nữa là tìm ra hai nghiệm của x^2+x-1=0 \(\frac{-1+\sqrt{5}}{2}\)và \(\frac{-1-\sqrt{5}}{2}\)là 2 nghiệm x1,x2 rồi tính P1 và P2 bình thường nha mn
\(y\in\left(-\infty;\infty\right)\)
\(-2y^2-3xy-2y+2x^2+6x=1\)
\(-2y^2-3xy-2y-2x^2+6x-1=0\)
\(-2y^2-\left(3x+2\right)y+2x^2+6x-1=0\)
\(y=\frac{\sqrt{25x^2+60x-4-3x-2}}{4}\)
\(y=-\frac{\sqrt{25x^2+60x-4+3x+2}}{4}\)
#Ứng Lân