K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2019

Đặt biểu thức trên là A

\(A^2=m+2\sqrt{m-1}+m-2\sqrt{m-1}-2\sqrt{\left(m+2\sqrt{m-1}\right)\left(m-2\sqrt{m-1}\right)}\)

\(A^2=2m-2\sqrt{m^2-4\left(m-1\right)}=2m-2\sqrt{m^2-4m+4}\)

\(A^2=2m-2\sqrt{\left(m-2\right)^2}=2m-2\left(m-2\right)=2m-2m+4=4\)

\(\Rightarrow A=\pm2\)

2 tháng 11 2019

\(M=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\ge\frac{4}{x^2+y^2+2xy}+\frac{2}{\left(x+y\right)^2}\)

\(=\frac{6}{\left(x+y\right)^2}=6\)

Đẳng thức xảy ra khi \(x=y=\frac{1}{2}\)

2 tháng 11 2019

đây là phương trình hay hệ phương trình

\(ĐK:x\ge\frac{-1}{2}\)

\(PT\Leftrightarrow x^2+\sqrt{x+2}=x+\sqrt{2x+1}\)

\(\Leftrightarrow x\left(x-1\right)=\sqrt{2x+1}-\sqrt{x+2}\)

\(\Leftrightarrow x\left(x-1\right)=\frac{x-1}{\sqrt{2x+1}+\sqrt{x+2}}\)

\(\Leftrightarrow\left(x-1\right)\left[x-\frac{1}{\sqrt{2x+1}+\sqrt{x+2}}\right]=0\)

\(\Rightarrow x=1\)

Vậy......

2 tháng 11 2019

ĐKXĐ: \(x\ge-2\)

PT\(\Leftrightarrow\left(x-\sqrt{x+2}-1\right)\left(3x+\sqrt{x+2}-1\right)=0\)

Done! (đừng hỏi tại sao em có ý tưởng phân tích "hay + trâu" vậy nhé:)))

chị biết làm r

phân tích kiểu của em khó làm đấy

20 tháng 11 2019

bđt \(\Leftrightarrow\)\(\Sigma_{cyc}\frac{a^2+ab+ca}{\left(b+c\right)^2}\ge\frac{9}{4}\)

Có: \(\frac{a^2+ab+ca}{\left(b+c\right)^2}=\frac{a^2+ab+bc+ca}{\left(b+c\right)^2}-\frac{bc}{\left(b+c\right)^2}\ge\frac{\left(a+b\right)\left(c+a\right)}{\left(b+c\right)^2}-\frac{1}{4}\)

=> \(\Sigma_{cyc}\frac{a^2+ab+ca}{\left(b+c\right)^2}\ge3\sqrt[3]{\frac{\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}}-\frac{3}{4}=\frac{9}{4}\)

20 tháng 11 2019

bđt\(\Leftrightarrow\left[\Sigma_{cyc}\frac{a}{\left(b+c\right)^2}\right]\left(a+b+c\right)\ge\frac{9}{4}\)

Ta co:

\(VT\ge\left(\Sigma_{cyc}\frac{a}{b+c}\right)^2\ge\frac{9}{4}\)(theo bunhiacopxki va nesbit)

Dau '=' xay ra khi \(a=b=c\)