K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2019

dễ vcl

4 tháng 11 2019

\(VT=\frac{a^2}{ab^2+abc+ac^2}+\frac{b^2}{c^2b+abc+a^2b}+\frac{c^2}{a^2c+abc+b^2c}\)

Áp dụng bđt Cauchy dạng phân thức 

\(\Rightarrow VT\ge\frac{\left(a+b+c\right)^2}{ab\left(a+b\right)+abc+ac\left(a+c\right)+abc+bc\left(b+c\right)+abc}\)

\(\Leftrightarrow VT\ge\frac{\left(a+b+c\right)^2}{ab\left(a+b+c\right)+ac\left(a+b+c\right)+bc\left(a+b+c\right)}\)

\(=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)\left(ab+bc+ac\right)}\)

\(\Leftrightarrow VT\ge\frac{a+b+c}{ab+bc+ac}\left(đpcm\right)\)

Dấu " = " xảy ra khi \(a=b=c\)

Chúc bạn học tốt !!!

6 tháng 11 2019

\(x=\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)

Đặt \(\sqrt[3]{20+14\sqrt{2}}=a;\sqrt[3]{20-14\sqrt{2}}=b\).Từ đó => a + b = x và ab=2

\(\Rightarrow x^3=40+3ab\left(a+b\right)\)

\(\Leftrightarrow x^3=40+6x\)

\(\Leftrightarrow x^3-6x-40=0\)

\(\Leftrightarrow\left(x-4\right)\left(x^2+4x+10\right)=0\)

Dễ thấy \(x^2+4x+10=\left(x+2\right)^2+6>0\)

\(\Rightarrow x=4\).Thay vào ta tìm được P = 1969

4 tháng 11 2019

help me ! HUrry

4 tháng 11 2019

Vẽ hình dùm luôn nha ^-^!!!! Cảm ơn

4 tháng 11 2019

ĐKXĐ :\(x\ge0\)

Mẫu :\(5x-3\sqrt{x}+8\)

\(=\left(\sqrt{5x}\right)^2-2.\frac{3\sqrt{5}}{10}.\sqrt{5x}+\left(\frac{3\sqrt{5}}{10}\right)^2+8-\left(\frac{3\sqrt{5}}{10}\right)^2\)

\(=\left(\sqrt{5x}-\frac{3\sqrt{5}}{10}\right)^2+\frac{151}{20}\)

\(=\sqrt{5}.\left(\sqrt{x}-\frac{3}{10}\right)^2+\frac{151}{20}\ge\frac{151}{20}\)(do \(\left(\sqrt{x}-\frac{3}{10}\right)^2\ge0\) )

\(\Rightarrow5x-3\sqrt{x}+8\ge\frac{151}{20}\)

\(\Rightarrow\frac{1}{5x-3\sqrt{x}+8}\le\frac{20}{151}\)

Mặt khác \(A=\frac{1}{5x-3\sqrt{x}+8}\)

\(\Rightarrow A\le\frac{20}{151}\)

Dấu ''='' xảy ra khi và chỉ khi \(\sqrt{x}=\frac{3}{10}\) hay \(x=\frac{9}{100}\)

Vậy Max A = \(\frac{20}{151}\)\(\Leftrightarrow\)\(x=\frac{9}{100}\)

6 tháng 11 2019

\(A=\frac{1}{5x-3\sqrt{x}+8}\left(ĐKXĐ:x\ge0\right)\)Dễ dàng cm A>0

Đặt \(\sqrt{x}=t\)(\(t\ge0\))

Khi đó ta viết lại A dưới dạng \(A=\frac{1}{5t^2-3t+8}\)

\(\Leftrightarrow5t^2A-3t.A+8A-1=0\)

\(\Delta=9A^2-4.5A\left(8A-1\right)=9A^2-160A^2+20A=-151A^2+20A\ge0\)

\(\Leftrightarrow151A^2-20A\le0\)

\(\Leftrightarrow A\left(151A-20\right)\le0\)

\(\Leftrightarrow A\le\frac{20}{151}\)(Do A>0)

Vậy MAXA=20/151.Dấu "=" xảy ra khi

\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}A< 0\\111A-20\ge0\end{cases}}\\\hept{\begin{cases}A\ge0\\111A-20\le0\end{cases}}\end{cases}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}A< 0\\A\ge\frac{20}{111}\end{cases}}\\\hept{\begin{cases}A\ge0\\A\le\frac{20}{111}\end{cases}}\end{cases}\Rightarrow}}A\le\frac{20}{111}\)

4 tháng 11 2019

help me ai lm đc tặng 10 k

4 tháng 11 2019

help me ai lm đc tặng 10 k

4 tháng 11 2019

ai lm đc mk tặng 10 k nha