Số A = 13n . 2 + 7n . 5 + 26 có phải là scp hay không? (n là số tự nhiên)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(VT=\frac{a^2}{ab^2+abc+ac^2}+\frac{b^2}{c^2b+abc+a^2b}+\frac{c^2}{a^2c+abc+b^2c}\)
Áp dụng bđt Cauchy dạng phân thức
\(\Rightarrow VT\ge\frac{\left(a+b+c\right)^2}{ab\left(a+b\right)+abc+ac\left(a+c\right)+abc+bc\left(b+c\right)+abc}\)
\(\Leftrightarrow VT\ge\frac{\left(a+b+c\right)^2}{ab\left(a+b+c\right)+ac\left(a+b+c\right)+bc\left(a+b+c\right)}\)
\(=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)\left(ab+bc+ac\right)}\)
\(\Leftrightarrow VT\ge\frac{a+b+c}{ab+bc+ac}\left(đpcm\right)\)
Dấu " = " xảy ra khi \(a=b=c\)
Chúc bạn học tốt !!!

\(x=\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)
Đặt \(\sqrt[3]{20+14\sqrt{2}}=a;\sqrt[3]{20-14\sqrt{2}}=b\).Từ đó => a + b = x và ab=2
\(\Rightarrow x^3=40+3ab\left(a+b\right)\)
\(\Leftrightarrow x^3=40+6x\)
\(\Leftrightarrow x^3-6x-40=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2+4x+10\right)=0\)
Dễ thấy \(x^2+4x+10=\left(x+2\right)^2+6>0\)
\(\Rightarrow x=4\).Thay vào ta tìm được P = 1969

ĐKXĐ :\(x\ge0\)
Mẫu :\(5x-3\sqrt{x}+8\)
\(=\left(\sqrt{5x}\right)^2-2.\frac{3\sqrt{5}}{10}.\sqrt{5x}+\left(\frac{3\sqrt{5}}{10}\right)^2+8-\left(\frac{3\sqrt{5}}{10}\right)^2\)
\(=\left(\sqrt{5x}-\frac{3\sqrt{5}}{10}\right)^2+\frac{151}{20}\)
\(=\sqrt{5}.\left(\sqrt{x}-\frac{3}{10}\right)^2+\frac{151}{20}\ge\frac{151}{20}\)(do \(\left(\sqrt{x}-\frac{3}{10}\right)^2\ge0\) )
\(\Rightarrow5x-3\sqrt{x}+8\ge\frac{151}{20}\)
\(\Rightarrow\frac{1}{5x-3\sqrt{x}+8}\le\frac{20}{151}\)
Mặt khác \(A=\frac{1}{5x-3\sqrt{x}+8}\)
\(\Rightarrow A\le\frac{20}{151}\)
Dấu ''='' xảy ra khi và chỉ khi \(\sqrt{x}=\frac{3}{10}\) hay \(x=\frac{9}{100}\)
Vậy Max A = \(\frac{20}{151}\)\(\Leftrightarrow\)\(x=\frac{9}{100}\)
\(A=\frac{1}{5x-3\sqrt{x}+8}\left(ĐKXĐ:x\ge0\right)\)Dễ dàng cm A>0
Đặt \(\sqrt{x}=t\)(\(t\ge0\))
Khi đó ta viết lại A dưới dạng \(A=\frac{1}{5t^2-3t+8}\)
\(\Leftrightarrow5t^2A-3t.A+8A-1=0\)
\(\Delta=9A^2-4.5A\left(8A-1\right)=9A^2-160A^2+20A=-151A^2+20A\ge0\)
\(\Leftrightarrow151A^2-20A\le0\)
\(\Leftrightarrow A\left(151A-20\right)\le0\)
\(\Leftrightarrow A\le\frac{20}{151}\)(Do A>0)
Vậy MAXA=20/151.Dấu "=" xảy ra khi
\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}A< 0\\111A-20\ge0\end{cases}}\\\hept{\begin{cases}A\ge0\\111A-20\le0\end{cases}}\end{cases}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}A< 0\\A\ge\frac{20}{111}\end{cases}}\\\hept{\begin{cases}A\ge0\\A\le\frac{20}{111}\end{cases}}\end{cases}\Rightarrow}}A\le\frac{20}{111}\)