Cho a,b,c > 0. Chứng minh:
\(\Sigma a^2\left(a^2+2b^2\right)\ge\Sigma ab\left(a^2+b^2+ac\right)+\sqrt{\frac{2}{3}}\left(a+b+c\right)\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
PS: Mình nghĩ bài này đúng với mọi số thực a,b,c. Ai có thể chứng minh?
ê
bởi vì abc là một số thập phân