Cho tam giác nhọn ABC với trực tâm H. Gọi M là điểm đối xứng với H qua trung điểm của BC. Chứng minh: 4 điểm A,B,M,C cùng thuộc một đường tròn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: ....
PT (1)\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2+x+y+2\right)=0\)
Dễ thấy cái ngoặc to >0. Do đó x = y.
Thay vào PT (2) \(\Leftrightarrow\sqrt{5-x}+\sqrt{x}+\sqrt{3x-1}=x^2+3x+1\)
Đến đây chắc là có đk: \(\frac{1}{3}\le x\le5\). Nghiệm xấu, anh tự giải nốt:D
Ta có:
\(\frac{a^2}{b}+9a^2b\ge2\sqrt{9a^4}=6a^2\)
Suy ra \(\frac{a^2}{b}\ge6a^2-9a^2b\)
Tương tự hai BĐT còn lại rồi cộng theo vế suy ra
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge6\left(a^2+b^2+c^2\right)-9\left(a^2b+b^2c+c^2a\right)\) (*)
Mặt khác ta có BĐT sau: \(\left(a^2+b^2+c^2\right)\left(a+b+c\right)\ge3\left(a^2b+b^2c+c^2a\right)\)
\(\Leftrightarrow a\left(a-b\right)^2+b\left(b-c\right)^2+c\left(c-a\right)^2\ge0\) (đúng)
Do đó \(\left(a^2+b^2+c^2\right)=\left(a^2+b^2+c^2\right)\left(a+b+c\right)\ge3\left(a^2b+b^2c+c^2a\right)\)
Thay vào (*) ta có: \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge6\left(a^2+b^2+c^2\right)-9\left(a^2b+b^2c+c^2a\right)\ge3\left(a^2+b^2+c^2\right)\)
Thay vào P: \(P=2018\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{1}{3\left(a^2+b^2+c^2\right)}\)
\(\ge2018.3\left(a^2+b^2+c^2\right)+\frac{1}{3\left(a^2+b^2+c^2\right)}\)
\(=2017.3\left(a^2+b^2+c^2\right)+3\left(a^2+b^2+c^2\right)+\frac{1}{3\left(a^2+b^2+c^2\right)}\)
\(\ge2017\left(a+b+c\right)^2+2=2019\)
Đẳng thức xảy ra khi a = b = c= 1/3
P/s: Em trình bày hơi lủng củng nha!
Chợt nghĩ ra cách khác:Chú ý BĐT: \(\left(a^2+b^2+c^2\right)\left(a+b+c\right)\ge3\left(a^2b+b^2c+c^2a\right)\)
Có:\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}=\frac{a^4}{a^2b}+\frac{b^4}{b^2c}+\frac{c^4}{c^2a}\)
\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\ge\frac{3\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}=3\left(a^2+b^2+c^2\right)\)
Rồi đến đây ok:v
CM BĐT : \(\left(x^2+y^2+z^2\right)^2\ge3\left(x^3y+y^3z+z^3x\right)\) ( * )
\(\frac{a}{ab+1}=\frac{a\left(ab+1\right)-a^2b}{ab+1}=a-\frac{a^2b}{ab+1}\)
TT ....
Áp dụng BĐT ( * ) với x = \(\sqrt{a}\); y = \(\sqrt{b}\); z = \(\sqrt{c}\) vào bài toán, ta có :
\(\frac{a}{ab+1}+\frac{b}{bc+1}+\frac{c}{ca+1}=a+b+c-\frac{a^2b}{ab+1}-\frac{b^2c}{bc+1}-\frac{c^2a}{ac+1}\)
\(\ge3-\frac{a^2b}{2\sqrt{ab}}-\frac{b^2c}{2\sqrt{bc}}-\frac{c^2a}{2\sqrt{ac}}=3-\frac{\sqrt{a^3b}+\sqrt{b^3c}+\sqrt{c^3a}}{2}\ge3-\frac{\frac{\left(a+b+c\right)^2}{3}}{2}=\frac{3}{2}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)