(1-2/3)^2 +|-3/5| + (-7/10)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét tam giác \(ABC\)có:
\(BC^2=5^2=25\)
\(AB^2+AC^2=3^2+4^2=9+16=25\)
Do đó \(BC^2=AB^2+AC^2\)theo định lí Pythaogore đảo suy ra tam giác \(ABC\)vuông tại \(A\).
b) Xét tam giác \(DBA\)và tam giác \(DBE\):
\(\widehat{DAB}=\widehat{DEB}\left(=90^o\right)\)
\(DB\)cạnh chung
\(\widehat{DBA}=\widehat{DBE}\)
Suy ra \(\Delta DBA=\Delta DBE\)(cạnh huyền - góc nhọn)
\(\Rightarrow DA=DE\)(hai cạnh tương ứng)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: (2n-3)n-2n(n+2)=2n^3-3n-2n^3-4n
=-7n chia hết cho 7
Vậy (2n-3)n-2n(n+2) chia hết cho 7 với mọi số nguyên n (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
A.
Gọi số cần tìm là \(\overline{abc}\) theo đề bài
\(\overline{abc}=100a+10b+c=98a+7b+2a+3b+c=\)
\(=\left(98a+7b\right)+2\left(a+b+c\right)+\left(b-c\right)⋮7\)
\(\Rightarrow\left(98a+7b\right)+2.14+b-c⋮7\)
Ta có \(\left(98a+7b\right)+2.14⋮7\Rightarrow b-c⋮7\) Ta có các trường hợp sau
+Nếu b=c => a=14-(b+c) mà a<=9 => 14-(b+c)<=9 => b+c>=5, mặt khác a>0 => 14-(b+c)>0=> b+c<14 từ đây ta có các trường hợp
b=c=3 => a=8
b=c=4 => a=6
b=c=5 => a=4
b=c=6 => a=2
+ Nếu b khác c
Nếu b=9 => c=2 => a=14-9-2=3
Nếu b=8 => c=1 => a=14-8-1=5
Nếu b=7 => c=0 => a=14-7=7
Nếu c=9 => b=2 => a=14-9-2=3
Nếu c=8 => b=1 => a=14-8-1=5
Nếu c=7 => b=0 => a=14-7=7
\(\Rightarrow\overline{abc}=\left\{833;644,455,266,329,392,518,581,707,770\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
//\(x,y\inℤ\)đúng không em ???
\(x\left(y-7\right)+5y=40\)
\(\Rightarrow x\left(y-7\right)+5\left(y-7\right)=5\)
\(\Rightarrow\left(x+5\right)\left(y-7\right)=5\)
Vì \(x,y\inℤ\Rightarrow x+5;y-7\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng :
\(x+5\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(y-7\) | \(5\) | \(-5\) | \(1\) | \(-1\) |
\(x\) | \(-4\) | \(-6\) | \(0\) | \(-10\) |
\(y\) | \(12\) | \(2\) | \(8\) | \(6\) |
Vậy \(\left(x;y\right)\in\left\{\left(-4;12\right);\left(-6;2\right);\left(0;8\right);\left(-10;6\right)\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Từ I hạ IG; IK lần lượt vuông góc với AC; AB
Do BI; CI là phân giác góc và C nên IH=IG=IK
=> HC=GC=3 (cm) ; HB=KB=2 (cm)
Dễ dàng chứng minh 2 tam giác AKI và AGI là 2 tam giác vuông cân
=> IG=AG; IK=AK. Mà IH=IK=IG => AG=AK=IH=1 (cm)
=> CABC= AK+KB+HB+HC+AG+GC=1+2+2+3+1+3=12 (cm).