TÍNH
a,\(\sqrt{9-4\sqrt{5}}\)
b,\(\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)
c,\(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7-4\sqrt{3}}}}\)
d,\(\left(\sqrt{5}+\sqrt{2}\right).\left(3\sqrt{2}-1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(n^4+n^3+1=a^2\)
\(\Leftrightarrow64n^4+64n^3+64=\left(8a\right)^2\)
\(\Leftrightarrow\left(8n^2+4n-1\right)^2-16n^2+8n+16n^2+63=\left(8a\right)^2\)
\(\Leftrightarrow\left(8n^2+4n-1\right)^2+8n+63=\left(8a\right)^2\)
\(\Rightarrow\left(8a\right)^2>\left(8n^2+4n-1\right)^2\)
\(\Rightarrow\left(8a\right)^2\ge\left(8n^2+4n\right)^2\)
\(\Rightarrow\left(8n^2+4n-1\right)^2+8n+63\ge\left(8n^2+4n\right)^2\)
\(\Rightarrow\left(8n^2+4n\right)^2-2\left(8n^2+4n\right)+1+8n+63\ge\left(8n^2+4n\right)^2\)
\(\Rightarrow16n^2\le64\)
\(\Rightarrow n^2\le4\Rightarrow n\in\left\{1;2\right\}\) vì m nguyên dương.
Vậy ....
666666666666666666666666666666666666667777777777777777777777777788888888888888888888899999999999999999999999999944444444444444444444445555555555555555555523243435356666356467578556475786896897896756745342111111111111111111111122222222222222222223333333333333333333333333333333333344444454444444444444555555555555556666666666666666666666777777777777777777777778888888888888899999999999999101010101010101010101010101001010010100101001010010100000000000000000000000000000000000000000000001111111111111111111111000000000000000010101010
Tham khảo
Câu hỏi của Châu Trần - Toán lớp 9 - Học toán với OnlineMath
Đặt \(\hept{\begin{cases}x+y=a\\xy=b\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(x^2-y^2\right)^2+3\left(xy+1\right)^2=5\\x+\frac{y^2}{x+y}=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(2a-b\right)^2-b^2+6b=2\\a^2-b-2a=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=\frac{2a^2-1}{2a-3}\\b=\frac{2a^2-4a}{2}\end{cases}}\)
\(\Rightarrow\frac{2a^2-1}{2a-3}=\frac{2a^2-4a}{2}=\frac{4a-1}{2a-5}\)
\(\Leftrightarrow\left(a-1\right)\left(a^2-7a-1\right)=0\)
Làm nốt
a)
= căn 5 -2
b)
= \(\sqrt{4+\sqrt{8}}.\sqrt{4-2-\sqrt{2}}\\ \)
= \(\sqrt{4+\sqrt{8}}.\sqrt{2-\sqrt{2}}\)
= \(2.\sqrt{2+\sqrt{2}}.\sqrt{2-\sqrt{2}}\)
=2.(4-2)
=4.