K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2020

Đặt \(K=a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\)

\(\Rightarrow2K=2a\sqrt{b^3+1}+2b\sqrt{c^3+1}+2c\sqrt{a^3+1}=\)\(2a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}+2b\sqrt{\left(c+1\right)\left(c^2-c+1\right)}\)\(+2c\sqrt{\left(a+1\right)\left(a^2-a+1\right)}\)\(\le a\left[\left(b+1\right)+\left(b^2-b+1\right)\right]+b\left[\left(c+1\right)+\left(c^2-c+1\right)\right]\)\(+c\left[\left(a+1\right)+\left(a^2-a+1\right)\right]\)(Theo BĐT AM - GM)

\(=a\left(b^2+2\right)+b\left(c^2+2\right)+c\left(a^2+2\right)\)\(=ab^2+bc^2+ca^2+6\)

Đặt \(M=ab^2+bc^2+ca^2\)

Không mất tính tổng quát, giả sử \(a\ge c\ge b\)thì ta có \(b\left(a-c\right)\left(c-b\right)\ge0\Leftrightarrow abc+b^2c\ge ab^2+bc^2\)

\(\Leftrightarrow ab^2+bc^2+ca^2\le abc+b^2c+ca^2\)

hay \(M\le abc+b^2c+ca^2\le2abc+b^2c+ca^2=c\left(a+b\right)^2\)\(=4c.\frac{a+b}{2}.\frac{a+b}{2}\le\frac{4}{27}\left(c+\frac{a+b}{2}+\frac{a+b}{2}\right)^3\)\(=\frac{4\left(a+b+c\right)^3}{27}=4\)

\(\Rightarrow2K\le10\Rightarrow K\le10\)

Vậy \(a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\le5\)

Đẳng thức xảy ra khi \(\left(a,b,c\right)=\left(2,0,1\right)\)

7 tháng 7 2020

Kiệt cop sai đáp án rồi kìa :))
Đoạn cuối không giả sử \(a\ge c\ge b\) được đâu nhá

Mà phải giả sử b là số nằm giữa a và c

Khi đó:

\(\left(b-a\right)\left(b-c\right)\le0\Leftrightarrow b^2+ac\le ab+bc\)

\(\Leftrightarrow ab^2+a^2c\le a^2b+abc\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+abc+bc^2=b\left(a^2+ac+c^2\right)\)

\(\le b\left(a^2+2ac+c^2\right)=b\left(a+c\right)^2=b\left(3-b\right)^2\)

Ta chứng minh \(b\left(3-b\right)^2\le4\Leftrightarrow\left(b-1\right)^2\left(b-4\right)\le0\) *đúng *

Vậy ............................

23 tháng 11 2019

\(\hept{\begin{cases}-0,5x+1,2y=2,7\\x-4,5y=-7,5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-x+2,4y=5,4\\x-4,5y=-7,5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-4,5y=-7,5\\-21y=-2,1\\x=4,5y-7,5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=1\\x=-3\end{cases}}\)

\(\hept{\begin{cases}-0,5x+1,2y=2,7\\x-4,5y=7,5\end{cases}}\) <=> \(\hept{\begin{cases}-0,5x+1,2y=2,7\\0,5x-2,25y=3,75\end{cases}}\) <=> \(\hept{\begin{cases}-0,5x+1,2y=2,7\\-1,05y=6,45\end{cases}}\) <=> \(\hept{\begin{cases}x=\frac{1,2y-2,7}{0,5}=\frac{1,2.-\frac{43}{7}-2,7}{0,5}=-\frac{141}{7}\\y=-\frac{43}{7}\end{cases}}\)

Vậy nghiệm của hpt là: \(\left(-\frac{141}{7};-\frac{43}{7}\right)\)

23 tháng 11 2019

Chú ý ghi lời giải, không khi đáp số !

10 tháng 7 2020

a) \(A=\left(\frac{4\sqrt{x}}{\sqrt{x}+2}-\frac{8x}{x-4}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)

\(\Leftrightarrow A=\frac{4\sqrt{x}\left(\sqrt{x}-2\right)-8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\frac{\sqrt{x}-1-2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(\Leftrightarrow A=\frac{4x-8\sqrt{x}-8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\frac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(\Leftrightarrow A=\frac{-4x-8\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\frac{-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(\Leftrightarrow A=\frac{-4\sqrt{x}}{\sqrt{x}-2}\cdot\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{-\sqrt{x}+3}\)

\(\Leftrightarrow A=\frac{4x}{\sqrt{x}-3}\)

b) Để \(A=-1\)

\(\Leftrightarrow\frac{4x}{\sqrt{x}-3}=-1\)

\(\Leftrightarrow4x=3-\sqrt{x}\)

\(\Leftrightarrow4x+\sqrt{x}-3=0\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(4\sqrt{x}-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}+1=0\\4\sqrt{x}-3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=-1\left(ktm\right)\\\sqrt{x}=\frac{3}{4}\Leftrightarrow x=\frac{9}{16}\left(tm\right)\end{cases}}\)

Vậy để \(A=-1\Leftrightarrow x=\frac{9}{16}\)

c) Khi \(x=36\)

\(\Leftrightarrow A=\frac{4\cdot36}{\sqrt{36}-3}=\frac{144}{3}=48\)

23 tháng 11 2019

a) \(A=\left(\frac{4\sqrt{x}}{\sqrt{x}+2}-\frac{8x}{x-4}\right):\left(\frac{\sqrt{x}-1}{\left(x-2\sqrt{x}\right)}-\frac{2}{\sqrt{x}}\right)\)

\(A=\left(\frac{4\sqrt{x}}{\sqrt{x}+2}-\frac{8x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\frac{2}{\sqrt{x}}\right)\)

\(A=\left(\frac{4\sqrt{x}\left(\sqrt{x}-2\right)-8x}{\left(\sqrt{x}+2\right)\left(x-2\right)}\right):\left(\frac{\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)

\(A=\left(\frac{4x-8\sqrt{x}-8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)

\(A=\left(\frac{-8\sqrt{x}-4x}{\left(\sqrt{x}+2\right)\sqrt{x}}\right):\left(\frac{3-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)

\(A=\left(\frac{-4\sqrt{x}\left(2-\sqrt{x}\right)}{\left(\sqrt{x}+2\right)\sqrt{x}}\right).\left(\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{3-\sqrt{x}}\right)\)

\(A=\frac{-4\sqrt{x}\left(2-\sqrt{x}\right).\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(3-\sqrt{x}\right)}\)

\(A=\frac{-4\sqrt{x}\left(2-\sqrt{x}\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(3-\sqrt{x}\right)}\)

.......... Đến đây bạn tự nhân đa thức với đa thức xog rút gọn nha.

23 tháng 11 2019

Quên r

23 tháng 11 2019

Điều kiện để y=(3-m).x-3 là hàm số bậc nhất a\(\ne\)0; <=> 3-m\(\ne\)0 <=> m \(\ne3\)

Điều kiện để y=(3m+7).x+2 là hàm số bậc nhất a\(\ne\)0; <=> 3m-7\(\ne\)0 <=> m\(\ne\)3/7

a) Điều kiện để để hàm số y=(3-m).x-3 // y=(3m+7).x+2 là a=a' ; b\(\ne\)b'

\(b\ne b'\Leftrightarrow-3\ne2\)

\(a=a'\Leftrightarrow3-m=3m+7\\ \Leftrightarrow4m=-4\\ \Leftrightarrow m=-1\)

Vậy để 2 hàm số bậc nhất song song thì m=1

b) Điều kiện để để hàm số y=(3-m).x-3 cắt y=(3m+7).x+2 là a\(\ne\)a' hay \(3-m\ne3m+7\Leftrightarrow m\ne-1\)

Vậy để 2 hàm số cắt nhau thì m khác -1 ; m khác 3 ; m khác 3/7

c) Bạn chỉ cần kiểm tra a có = a'; b có =b' không thôi muộn r pải off