Cho parabol y = 1/2x2 và đường thẳng (d) y = -x + m(x là ẩn, m là tham số)
a) Viết phương trình đường thẳng đi qua hai điểm M và N. Biết hai điểm M và N đều thuộc parabol (P) có hoành độ lần lượt là 1;-3
b) Tìm tất cả các giá trị của tham số m để đường thẳng(d) cắt parabol (P) tại hai điểm phân biệt A(x1;y1),B(x2;y2) sao cho Q = x1x2+y1y2 -1 đạt giá trị nhỏ nhất
a.
Do M thuộc parabol \(\Rightarrow y_M=\dfrac{1}{2}x_M^2=\dfrac{1}{2}.1=\dfrac{1}{2}\Rightarrow M\left(1;\dfrac{1}{2}\right)\)
Do N thuộc parabol \(\Rightarrow y_N=\dfrac{1}{2}x_N^2=\dfrac{1}{2}.\left(-3\right)^2=\dfrac{9}{2}\Rightarrow N\left(-3;\dfrac{9}{2}\right)\)
Gọi pt đường thẳng qua MN có dạng \(y=ax+b\)
Thay tọa độ M, N vào pt đường thẳng ta được:
\(\left\{{}\begin{matrix}a+b=\dfrac{1}{2}\\-3a+b=\dfrac{9}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=\dfrac{3}{2}\end{matrix}\right.\)
\(\Rightarrow y=-x+\dfrac{3}{2}\)
b.
Phương trình hoành độ giao điểm (P) và (d):
\(\dfrac{1}{2}x^2=-x+m\Leftrightarrow x^2+2x-2m=0\)
\(\Delta'=1+2m>0\Rightarrow m>-\dfrac{1}{2}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-2m\end{matrix}\right.\)
Do \(A;B\in\left(d\right)\Rightarrow\left\{{}\begin{matrix}y_1=-x_1+m\\y_2=-x_2+m\end{matrix}\right.\)
Từ đó ta có:
\(Q=x_1x_2+y_1y_2-1=-2m+\left(-x_1+m\right)\left(-x_2+m\right)-1\)
\(=-2m+x_1x_2+m^2-m\left(x_1+x_2\right)-1\)
\(=-2m-2m+m^2+2m-1\)
\(=m^2-2m-1=\left(m-1\right)^2-2\ge-2\)
Dấu "=" xảy ra khi \(m=1\)