Một xe A chạy với vận tốc không đổi là vA đuổi theo một chiếc xe B đang chuyển động cùng
hướng với nó với vận tốc 72 km/h trên cùng một đường thẳng. Người lái xe B khi thấy chiếc
xe A còn cách mình 60 m ở phía sau liền tăng tốc với gia tốc không đổi 0, 75 m/s^2 để tránh
sự vượt qua hay sự va chạm với xe A. Biết rằng khoảng cách ngắn nhất khi xe A đến gần xe B
là 6 m. Hãy xác định vận tốc của xe A và thời gian cần thiết để thực hiện điều này ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x^2+2x+3}=\sqrt{\left(x+1\right)^2+2}\)
Vì \(\left(x+1\right)^2\ge0\forall x\)nên \(\left(x+1\right)^2+2\ge2\forall x\)
Biểu thức trong căn luôn lớn hơn 0 nên \(\sqrt{x^2+2x+3}\)có nghĩa với mọi x thực
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Dễ CM đc: \(\Sigma_{cyc}\frac{1}{ab+a+1}=1\) với abc=1
\(B=\Sigma_{cyc}\frac{1}{ab+a+2}\le\frac{1}{16}\left(9\Sigma_{cyc}\frac{1}{ab+a+1}+3\right)=\frac{1}{16}\left(9.1+3\right)=\frac{3}{4}\)
"=" \(\Leftrightarrow\)\(a=b=c=1\)
https://olm.vn/hoi-dap/detail/2885694291.html?pos=1676926895
\(A=\sqrt{\left(4+\sqrt{15}\right)\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)}.\left(\sqrt{10}+\sqrt{6}\right)\)
\(A=\sqrt{\left(4+\sqrt{15}\right)\left(16-15\right)}.\left(\sqrt{2.5}+\sqrt{2.3}\right)\)
\(A=\sqrt{4+\sqrt{15}}.\sqrt{2}\left(\sqrt{5}+\sqrt{3}\right)\)
\(A=\sqrt{8+2\sqrt{3.5}}.\left(\sqrt{5}+\sqrt{3}\right)\)
\(A=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}.\left(\sqrt{5}+\sqrt{3}\right)\)
\(A=\left(\sqrt{5}+\sqrt{3}\right).\left(\sqrt{5}+\sqrt{3}\right)=\left(\sqrt{5}+\sqrt{3}\right)^2\)
\(A=8+2\sqrt{15}\)
bông zua
Gọi mốc thời gian là lúc 2 xe cách nhau 60 m , gốc tọa độ là tại vị trí xe A , chiều dương là chều chuyển động :
\(\hept{\begin{cases}x_A=v_At\\x_B=60+20t+\frac{0,75t^2}{2}\\v_B=20+0,75t\end{cases}}\)
Ta có hệ :
\(\hept{\begin{cases}60+20t+\frac{0,75t^2}{2}-v_At=6\\20+0,75t=v_A\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}t=12\\v_A=29\end{cases}}\)