K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2020

x2>=0 Dấu "=" chỉ xảy ra khi x=0

-x2 =< 0 Dấu "=" chỉ xảy ra khi x=0

*) bđt Cô-si

cho a,b không âm ta có \(\frac{a+b}{2}\le\sqrt{ab}\)(*) dấu "=" xảy ra khi a=b

tổng quát: cho n số không âm a1;a2;....;an

ta có \(\frac{a_1+a_2+....+a_n}{n}\ge\sqrt[n]{a_1\cdot a_2......a_n}\)dấu "=" xảy ra khi a1=a2=....=an

*) bđt Bunhiacopxki

cho bốn số a,b,c,d ta luôn có (ab+cd)2 =< (a2+c2)(b2+d2) dấu "=" xảy ra <=> ad=bc

tổng quát cho 2n số a1,a2,...;an; b1,b2,....,bn

ta luôn có (a1b1+a2b2+....+anbn)2 =< (a12+a22+....+an2).(b12+....+bn2)

dấu "=" xảy ra \(\frac{a_1}{b_1}=\frac{a_2}{b_2}=....=\frac{a_n}{b_n}\)

quy ước nếu mẫu bằng 0 thì tử bằng 0

(1) 2(a2+b2) >= (a+b)2 >= 4ab

(2) 3(a2+b2+c2) >= (a+b+c)2 >= 3(ab+bc+ca)

(3) \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)

(4) \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

25 tháng 7 2020

gọi E là giao điểm của Ah và MB. xét tam giác KAH và tam giác KMB có

 \(\widehat{AKH}=\widehat{MKB}\left(=90^0\right)\)

\(\widehat{KAM}=\widehat{KMB}\)(2 góc cùng phụ góc AMN)

do đó tam giác KAH ~ tam giác KMB => \(\frac{KH}{KB}=\frac{AK}{BM}\Rightarrow KH\cdot KM=AK\cdot AB\)

áp dụng bđt Cô-si cho 2 số dương ta có:

\(\sqrt{AK\cdot AB}\le\frac{AK+AB}{2}\Leftrightarrow AK\cdot AB\le\frac{AB^2}{4}\)

do đó \(KH\cdot KM\le\frac{AB^2}{4};\frac{AB^2}{4}\)không đổi. dấu "=" xảy ra <=> AK=AB

vậy giá trị lớn nhất của KH.KM là \(\frac{AB^2}{4}\)khi AK=AB

25 tháng 7 2020

bđt mạnh hơn: \(a^2+b^2+c^2+2abc+1\ge2\left(ab+bc+ca\right)\) qua la sen lun

\(\Leftrightarrow\)\(abc\ge\frac{1}{2}\left(ab+bc+ca+abc\right)-\frac{1}{4}\left(a^2+b^2+c^2\right)-\frac{1}{4}=\frac{7}{4}-\frac{1}{4}\left(a^2+b^2+c^2\right)\)

từ gt dễ có được \(a+b+c\ge3\)

\(\Rightarrow\)\(3\left(a^2+b^2+c^2\right)+abc\ge\frac{11}{4}\left(a^2+b^2+c^2\right)+\frac{7}{4}\ge\frac{11}{12}\left(a+b+c\right)^2+\frac{7}{4}\ge10\)

"=" \(\Leftrightarrow\)\(a=b=c=1\)

25 tháng 7 2020

1 lời giải nếu a,b,c là 3 cạnh 1 tam giác

đặt \(a=\frac{2x}{y+z}b=\frac{2y}{z+x};c=\frac{2z}{x+y}\) bđt trở thành : 

\(12\Sigma\frac{x^2}{\left(y+z\right)^2}+\frac{8xyz}{\Pi\left(x+y\right)}=\left(\frac{6x+6y-z}{\Pi\left(x+y\right)}\right)\left(x-y\right)^2+12\Sigma\left(\frac{x}{y+z}-\frac{1}{2}\right)^2+10\ge10\)

1 tháng 8 2020

Không ai làm được rồi :(

24 tháng 7 2020

A B C H M N E D O

Bài làm

a) Vì \(\widehat{BAC}=\widehat{AEH}=\widehat{ADH}=90^0\)

=> tứ giác AEDH là hình chữ nhật.

=> Hai đường chéo AH và ED cắt nhau tại trung điểm mỗi đường. Mà AH = ED ( tính chất đường chéo của hình vuông )

Gọi giao điểm của AH và ED là O

=> Tam giác OHD cân tại O.

=> \(\widehat{AHD}=\widehat{EDH}\)                    (1)

Mà tam giác DHC vuông tại D

Mà DN là đường trung tuyến ( do N là trung điểm HC )

=> DN = HN = HC

=> Tam giác DHN cân tại N

=> \(\widehat{DHN}=\widehat{HDN}\)( hai góc ở đáy tam giác cân )   (2)

Cộng (1) vào (2), ta được: \(\widehat{AHD}+\widehat{DHN}=\widehat{EDH}+\widehat{HDN}\)

=> \(\widehat{AHC}=\widehat{EDN}\)

hay \(90^0=\widehat{EDN}\)                  

=> DN vuông góc với ED                    (3)

Vì tam giác OEH cân tại O ( cmt )

=> \(\widehat{OEH}=\widehat{OHE}\)( hai góc ở đáy tam giác cân )                    (4)

Mà tam giác BEH vuông tại H

Mà EM là trung tuyến ( Do N là trung điểm BH )

=> EM = BM = MH 

=> Tam giác EMH cân tại M.

=> \(\widehat{MEH}=\widehat{MHE}\)                (5) 

Cộng (4) và (5) ta được: \(\widehat{OEH}+\widehat{MEH}=\widehat{OHE}+\widehat{MHE}\)

=> \(\widehat{OEM}=\widehat{OHM}\)

hoặc \(\widehat{DEM}=\widehat{AHB}\)

hay \(\widehat{DEM}=90^0\)

=> ME vuông góc với ED (6)

Từ (3) và (6) => ME // DN

=> DEMN là hình thang 

Mà \(\widehat{DEM}=90^0\)( cmg )

=> Hình thang DEMN là hình thang vuông ( đpcm )

24 tháng 7 2020

\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\left(x\ne-4;-5;-6;-7;-8\right)\)

\(\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{x}{x+7}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Leftrightarrow\frac{3}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Rightarrow x^2+11x+28=54\)

\(\Leftrightarrow x^2+11x-26=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+13=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=-13\left(tm\right)\end{cases}}}\)

vậy x=2; x=-13

24 tháng 7 2020

Bài làm:

đkxđ: \(x\ne\left\{-4;-5;-6;-7\right\}\)

Ta có: \(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Leftrightarrow\frac{3}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow x^2+11x+28=54\)

\(\Leftrightarrow x^2+11x-26=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+13=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=-13\end{cases}}\)

Vậy tập nghiệm của PT \(S=\left\{-13;2\right\}\)

24 tháng 7 2020

a, Điều kiện xác định: x<>0

b, Điều kiện xác định: x <> -1/3

c, Điều kiện xác định: x<>2

d, Điều kiện xác định: a<>0 và b<>0; b<>2a

A : không rút gọn được

\(B=\frac{4x^2\left(x-2\right)+3\left(x-2\right)}{3x\left(4x^2+3\right)+4x^2+3}=\frac{\left(4x^2+3\right)\left(x-2\right)}{\left(4x^2+3\right)\left(3x+1\right)}=\frac{x-2}{3x+1}\)

\(C=\frac{x^4-1}{x^3+2x^2-x-2}=\frac{\left(x^2-1\right)\left(x^2+1\right)}{\left(x+2\right)\left(x^2-1\right)}=\frac{x^2+1}{x+2}\)

\(D=\frac{a^3+b^3}{a^3+\left(a-b\right)^3}=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{\left(a+a-b\right)\left(a^2-a^2+ab+a^2-2ab+b^2\right)}\)\(=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{\left(2a-b\right)\left(a^2-ab+b^2\right)}=\frac{a+b}{2a-b}\)

24 tháng 7 2020

B C A D E F H Bài làm:

1) Tam giác BDH ~ Tam giác BEC (g.g) vì:

\(\hept{\begin{cases}\widehat{HBD}=\widehat{EBC}\left(gt\right)\\\widehat{BDH}=\widehat{BEC}=90^0\end{cases}}\)

2) 

a) Theo phần 1 có 2 tam giác đồng dạng nên ta có tỉ số sau: \(\frac{BH}{BC}=\frac{BD}{BE}\Leftrightarrow BH.BE=BD.BC\left(1\right)\)

b) Tương tự ta CM được: \(CH.CF=CD.BC\left(2\right)\)

Cộng vế (1) và (2) ta được: \(BH.BE+CH.CF=BD.BC+CD.BC\)

\(=\left(BD+DC\right).BC=BC.BC=BC^2\)

3)

a) Tam giác AEB ~ Tam giác AFC (g.g) vì:

\(\hept{\begin{cases}\widehat{BAE}=\widehat{FAC}\left(gt\right)\\\widehat{AEB}=\widehat{CFA}=90^0\end{cases}}\)

\(\Rightarrow\frac{AE}{FA}=\frac{AB}{AC}\)

Tam giác AEF ~ Tam giác ABC (c.g.c) vì:

\(\hept{\begin{cases}\frac{AE}{FA}=\frac{AB}{AC}\left(cmt\right)\\\widehat{FAE}=\widehat{BAC}\left(gt\right)\end{cases}}\)

\(\Rightarrow\widehat{AEF}=\widehat{ABC}\)

b) Tương tự a ta CM được: \(\widehat{DEC}=\widehat{ABC}\)

\(\Rightarrow\widehat{AEF}=\widehat{DEC}\Leftrightarrow90^0-\widehat{AEF}=90^0-\widehat{DEC}\Rightarrow\widehat{FEB}=\widehat{BED}\)

=> EB là phân giác của tam giác DEF

Tương tự ta chứng minh được DA,FC là các đường phân giác còn lại của tam giác DEF, mà giao 3 đường này là H

=> H là giao 3 đường phân giác của tam giác DEF

=> H cách đều 3 cạnh của tam giác DEF (tính chất đường pg của tam giác)

4) ch nghĩ ra nhé

25 tháng 7 2020

4) 

+) Gọi I là giao điểm của đường trung trực HC và đường trung trực MN 

=> IH = IC; IM = IN 

Lại có MH = NC ( gt) 

=> \(\Delta\)IMH = \(\Delta\)INC => ^MHI = ^NCI mà ^NCI = ^HCI = ^CHI ( vì IH = IC => \(\Delta\)IHC cân )

=> ^MHI = ^CHI hay ^BHI = ^CHI => HI là phân giác ^BHC 

=> I là giao điểm của phân giác ^BHC và trung trực HC 

=> I cố định 

=> Đường trung trực của đoạn MN luôn đi qua một điểm cố định

24 tháng 7 2020

x2-2x+1=(x-1)2 >= 0 => x2-2x+3 >= 2 với mọi x thuộc R (1)

y2+6y+9=(y+3)2 >=0 => y2+6y+12 >=3 với mọi y thuộc R (2)

M=xy(x-2)(y+6)-12x2-24x+3y2+18y+2050

=(x2-2x)(y2+6y)+12(x2-2x)+3(y2+6y)+36+2014

=(x2-2x)(y2+6y+12)+3(y2+6y+12)+2014

=(x2-2x+3)(y2+6y+12)+2014 (3)

từ (1); (2) và (3) => B >= 2.3+2014 => B >= 2020

dấu "=" xảy ra <=> x=1 và y=-3

vậy minM=2020 khi x=1; y=-3

24 tháng 7 2020

Sửa đề + bài làm:

a) \(-2x^2-3x+5=-2\left(x^2+\frac{3}{2}x+\frac{9}{16}\right)+\frac{49}{8}\)

\(=-2\left(x+\frac{3}{4}\right)^2+\frac{49}{8}\le\frac{49}{8}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x+\frac{3}{4}\right)^2=0\Rightarrow x=-\frac{3}{4}\)

Vậy GTLN của biểu thức bằng \(\frac{49}{8}\)khi \(x=-\frac{3}{4}\)

b) \(\left(2-x\right)\left(x+4\right)=-x^2-2x+8=-\left(x^2+2x+1\right)+9\)

\(=-\left(x+1\right)^2+9\le9\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x+1\right)^2=0\Rightarrow x=-1\)

Vậy GTLN của biểu thức bằng 9 khi x = -1

24 tháng 7 2020

a) Sửa -2x2 - 3x + 5 

= -2( x2 + 3/2x + 9/16 ) + 49/8

= -2( x + 3/4 )2 + 49/8

( x + 3/4 )2 ≥ 0 ∀ x => -2( x + 3/4 )2 ≤ 0 ∀ x

=> -2( x + 3/4 )2 + 49/8 ≤ 49/8 ∀ x

Dấu = xảy ra <=> x + 3/4 = 0 => x = -3/4

Vậy GTLN của biểu thức = 49/8 khi x = -3/4

b) ( 2 - x )( x + 4 ) = -x2 - 2x + 8 = -x2 - 2x - 1 + 9

                                                   = -( x2 + 2x + 1 ) + 9

                                                   = -( x + 1 )2 + 9 

( x + 1 )2 ≥ 0 ∀ x => -( x + 1 )2 ≤ 0 ∀ x

=> -( x + 1 )2 + 9 ≤ 9 ∀ x

Dấu = xảy ra <=> x + 1 = 0 => x = -1

Vậy GTLN của biểu thức = 9 khi x = -1

24 tháng 7 2020

Biến đổi: (c-a) thành: -[(b-c)+(a-b)]

Thấy xuất hiện nhân tử chung r thì ... phân tích tiếp, ko khó lắm.

24 tháng 7 2020

\(a\left(b+c\right)^2\left(b-c\right)+b\left(c+a\right)^2\left(c-a\right)+c\left(a+b\right)^2\left(a-b\right)\)

\(=\left(b-c\right)\left[a\left(b+c\right)^2-b\left(c+a\right)^2\right]-\left(a-b\right)\left[b\left(c+a\right)^2-c\left(a+b\right)^2\right]\)

\(=\left(b-c\right)\left(ab^2+ac^2-bc^2-ba^2\right)-\left(a-b\right)\left(bc^2+ba^2-ca^2-ab^2\right)\)

\(=\left(b-c\right)\left(a-b\right)\left(c^2-ab\right)-\left(a-b\right)\left(b-c\right)\left(a^2-bc\right)\)

\(=\left(b-c\right)\left(a-b\right)\left(c^2-ab-a^2+bc\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)