Tìm các nghiệm nguyên của phương trình :
a ) \(x^2+2y^2+3xy-x-y+3=0\)
b ) \(xy-2y-3=3x-x^2\)
c ) \(2x^2+3xy-2y^2=7\)
d ) \(x^2+y^2-x-y=8\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) DK : x > 0; x khác 1
\(P=\sqrt{x}\left(\sqrt{x}-1\right)-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)
\(=x-\sqrt{x}+1\)
c ) \(Q=\frac{2\sqrt{x}}{P}=\frac{2\sqrt{x}}{x-\sqrt{x}+1}\)
<=> \(xQ-\left(Q+2\right)\sqrt{x}+Q=0\)(1)
TH1: Q = 0 => x = 0 loại
TH2: Q khác 0
(1) là phương trình bậc 2 với tham số Q ẩn x.
(1) có nghiệm <=> \(\left(Q+2\right)^2-4Q^2\ge0\)
<=> \(-3Q^2+4Q+4\ge0\)
<=> \(-\frac{2}{3}\le Q\le2\)
Vì Q nguyên và khác 0 nên Q = 1 hoặc Q = 2
Với Q = 1 => \(x-3\sqrt{x}+1=0\)
<=> \(\sqrt{x}=\frac{3}{2}\pm\frac{\sqrt{5}}{2}\)----> Tìm được x
Với Q = 2 => \(2x-4\sqrt{x}+1=0\Leftrightarrow\sqrt{x}=1\pm\frac{1}{\sqrt{2}}\)-----> tìm đc x.
Tự làm tiếp nhé! Kiểm tra lại đề bài câu b.
Dùng liên hợp.
pt <=> \(\left(x-\sqrt{2}\right)\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)\left(1+\sqrt{3}\right)\)
\(-3\left(x-1\right)\left(x-\sqrt{3}\right)\left(\sqrt{2}+1\right)\left(\sqrt{2}+\sqrt{3}\right)\)
\(+2\left(x-1\right)\left(x-\sqrt{2}\right)\left(\sqrt{3}+1\right)\left(\sqrt{3}+\sqrt{2}\right)=3x-1\)
<=> \(\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)\left[\left(x-\sqrt{2}\right)\left(1+\sqrt{3}\right)-\left(x-1\right)\left(\sqrt{2}+\sqrt{3}\right)\right]\)
\(-2\left(x-1\right)\left(\sqrt{3}+\sqrt{2}\right)\left[\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)-\left(x-\sqrt{2}\right)\left(1+\sqrt{3}\right)\right]\)
\(=3x-1\)
<=> \(\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)\left(x+\sqrt{3}\right)\left(1-\sqrt{2}\right)\)
\(-2\left(x-1\right)\left(\sqrt{3}+\sqrt{2}\right)\left(x+1\right)\left(\sqrt{2}-\sqrt{3}\right)=3x-1\)
<=> \(3-x^2-2\left(1-x^2\right)=3x-1\)
<=> \(x^2-3x+2=0\) phương trình bậc 2.
Em làm tiếp nhé!
Theo BĐT Bunhiacopski ta có:
\(\left(1^2+1^2+1^2\right)\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\sqrt{z}^2\right]\ge\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\)
\(\Leftrightarrow3\left(x+y+z\right)\ge\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\)
\(\Leftrightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}\le\sqrt{3\left(x+y+z\right)}=3\)
Theo BĐT Cauchy-Schwarz dạng Engle ( hay là BCS ) ta có:
\(P=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{3}=3\)
Dấu "=" xảy ra tại \(x=y=z=1\)
PS:Hôm nay rảnh quá nên viết cả tên BĐT ra,bình thường thì mik ko viết:v
P=\(\left(y^2-4y+4\right)+\left(3y+\frac{12}{y}\right)+2012\)=\(\left(y-2\right)^2+3\left(y+\frac{4}{y}\right)+2012\)
Áp dụng BĐT Cauchy: \(y+\frac{4}{y}\ge2\sqrt{y.\frac{4}{y}}=2.2=4\)
Lại có \(\left(y-2\right)^2\ge0\)
=> P\(\ge\)0+3.4+2012=2024
Nửa chu vi của mảnh vườn là: 280 : 2 = 140 (m )
Gọi chiều rộng mảnh vườn hình chữ nhật là x ( 0 < x \(\le\)70; m )
Chiều dài của mảnh vườn là : 140 - x (m )
Sau khi làm lối đi chiều rộng còn lại là: x - 4 (m )
Sau khi làm lối đi chiều dài còn lại là: 140 - x - 4 = 136 - x (m)
Phần diện tích để trồng trọt là: ( 136 -x ) ( x- 4 )
Theo đề bài ta có phương trình:
( 136 -x ) ( x- 4 ) = 4256
<=> x = 80 ( loại ) hoặc x = 60 ( tm)
Vậy chiều rộng là 60 m và chiều dài là 140 - 60 = 80 m.
Bài giải: Gọi chiều rộng của hình chữ nhật là x (Đk:m; x > 0)
=> chiều dài của hình chữ nhật là x + 8
Khi đó, S HCN = x(x + 8) = 768
=> x2 + 8x - 768 = 0
=> x2 + 32x - 24x - 768 = 0
=> (x + 32)(x - 24) = 0
=> x = 24
Vậy chiều rộng mảnh vườn HCN = 24 m
=> chiều dài mảnh vườn = 24 + 8 = 32 m
Chu vi mảnh vườn HCN là: (24 + 32).2 = 112 (m)
ĐK: x >0
Liên hợp:
pt <=> \(\sqrt{\frac{x^2+3}{x}}-2=\frac{x^2+7}{2\left(x+1\right)}-2\)
<=> \(\frac{\frac{x^2+3}{x}-4}{\sqrt{\frac{x^2+3}{x}}+2}=\frac{x^2+7-4\left(x+1\right)}{2\left(x+1\right)}\)
<=> \(\frac{x^2-4x+3}{x\left(\sqrt{\frac{x^2+3}{x}}+2\right)}=\frac{x^2-4x+3}{2\left(x+1\right)}\)
<=> \(\orbr{\begin{cases}x^2-4x+3=0\left(1\right)\\x\left(\sqrt{\frac{x^2+3}{x}}+2\right)=2\left(x+1\right)\left(2\right)\end{cases}}\)
(1) <=> x = 1 hoặc x = 3 (tm)
(2) <=> \(x\sqrt{\frac{x^2+3}{x}}=2\)
<=> \(x\left(x^2+3\right)=4\)
<=> \(x^3+3x-4=0\)
,<=> (x-1)(x^2 +x +4) = 0
<=> x = 1 (tm)
Vậy x = 1 hoặc x = 3.
cách khác nhung chỉ dài thêm thôi
\(DK:x>0\)
PT\(\Leftrightarrow2\left(x+1\right)\sqrt{x^2+3}=\sqrt{x}\left(x^2+7\right)\)
Dat \(\sqrt{x^2+3}=t>0\)
PT tro thanh
\(\sqrt{x}t^2-2\left(x+1\right)t+4\sqrt{x}=0\)
Ta co:
\(\Delta^`_t=\left(x-2\right)^2\ge0\)
\(\Rightarrow\hept{\begin{cases}t_1=\frac{x+1+\left|x-2\right|}{\sqrt{x}}\\t_2=\frac{x+1-\left|x-2\right|}{\sqrt{x}}\\t_3=\frac{x+1}{\sqrt{x}}\end{cases}}\)
Sau do the vo giai nhu binh thuong :D