2 vòi nước cùng chảy vào 1 bể. Nếu 1 vòi chảy rồi dừng lại sai đó cho vòi 2 chảy tiếp 8 giờ thì đầy bể. Nếu vòi 1 chảy trong 1 giờ ròi cả 2 vòi chảy trong 4 giờ thì chảy được \(\frac{8}{9}\)bể. hỏi mỗi vòi chảy riêng 1 mình thì đầy bể
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}x+y=z\left(1\right)\\x^3+y^3=z^2\left(2\right)\end{cases}}\)
Ta thế (1) vào (2) : \(\left(x+y\right)^3-3xy\left(x+y\right)=\left(x+y\right)^2\)
<=> \(\left(x+y\right)^2-3xy=\left(x+y\right)\)
Đặt: \(x+y=S;xy=P\)vì x, y nguyên dương => S; P nguyên dương
ĐK để tồn tại nghiệm x, y là: \(S^2\ge4P\)
Có: \(S^2-3P=S\)
=> \(S+3P\ge4P\)<=> \(S\ge P\)
=> \(S^2-S=3P\le3S\)
<=> \(0\le S\le4\)
+) S = 0 loại
+) S = 1 => P = 0 loại
+) S = 2 => P =3/2 loại
+) S = 3 => P = 2
=> \(\hept{\begin{cases}x+y=3\\xy=2\end{cases}}\)<=> x =2; y =1 hoặc x = 1; y =2
=> (x; y; z ) = ( 1; 2; 3) thử lại thỏa mãn
hoặc (x; y; z) = ( 2; 1; 3 ) thử lại thỏa mãn
+) S = 4 => P = 4
=> \(\hept{\begin{cases}x+y=4\\xy=4\end{cases}\Leftrightarrow}x=y=2\)
=> (x; y; z ) = ( 2; 2; 4) thử lại thỏa mãn.
Vậy: có 3 nghiệm là:....
\(\frac{a}{x-b}+\frac{b}{x-a}=2\)(1)
DK: \(x\ne a;b\)
\(\frac{a}{x-b}+\frac{b}{x-a}=2\)
<=> \(a\left(x-a\right)+b\left(x-b\right)=2\left(x-a\right)\left(x-b\right)\)
<=> \(ax-a^2+bx-b^2=2x^2-2ax-2bx+2ab\)
<=> \(2x^2-3\left(a+b\right)x+\left(a+b\right)^2=0\)(2)
phương trình (1) có 2 nghiệm phân biệt <=> phương trình (2) có 2 nghiệm phân biệt khác a, b
<=> \(\hept{\begin{cases}\Delta>0\\x\ne a\\x\ne b\end{cases}}\)Em làm tiếp nhé