Các anh chị cho em hỏi nội qui olm các anh chị đọc ở đâu vậy ạ?Sao em không thấy.Và kb vs nhau kiểu j vậy ạ:
Cho hàm số:
y=f(x)=\(\frac{2}{3}\)x
Tính:f(-2) f(-1) f(0) f(1/2) f(1) f(2) f(3)
Giải thôi đừng nói xấu nhé.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Đkxđ:\hept{\begin{cases}2x-1>0\\4x-3>0\\x>0\end{cases}\Leftrightarrow x>\frac{3}{4}}\)
Phương trình tương đương với:
\(\left(\frac{x}{\sqrt{2x-1}}-1\right)+\left(\frac{x}{\sqrt[4]{4x-3}}-1\right)=0\)
\(\Leftrightarrow\frac{x-\sqrt{2x-1}}{\sqrt{2x-1}}+\frac{2-\sqrt[4]{4x-3}}{\sqrt[4]{4x-3}}=0\)
\(\Leftrightarrow\frac{x^2-2x+1}{\sqrt{2x-1}\left(x+\sqrt{2x-1}\right)}+\frac{x^2-\sqrt{4x-3}}{\sqrt[4]{4x-3}\left(x+\sqrt[4]{4x-3}\right)}=0\)
\(\Leftrightarrow\frac{\left(x-1\right)^2}{\sqrt{2x-1}\left(x+\sqrt{2x-1}\right)}+\frac{x^4-4x+3}{\sqrt[4]{4x-3}\left(x+\sqrt[4]{4x-3}\right)\left(x^2+\sqrt{4x-3}\right)}=0\)
\(\Leftrightarrow\frac{\left(x-1\right)^2}{\sqrt{2x-1}\left(x+\sqrt{2x-1}\right)}+\frac{\left(x-1\right)^2\left(x^2+2x+3\right)}{\sqrt[4]{4x-3}\left(x+\sqrt[4]{4x-3}\right)\left(x^2+\sqrt{4x-3}\right)}=0\)
\(\Leftrightarrow\left(x-1\right)^2\left[\frac{1}{\sqrt{2x-1}\left(x+\sqrt{2x-1}\right)}+\frac{\left(x+1\right)^2+2}{\sqrt[4]{4x-3}\left(x+\sqrt[4]{4x-3}\right)\left(x^2+\sqrt{4x-3}\right)}\right]=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy .............................
A = 4n + 4n + 16 = 2.4n + 16
Có 4 đồng dư với 1 (mod 3)
=> 4n đồng dư với 1(mod 3)
=> 2.4n đồng dư với 2(mod 3)
Mà 16 đồng dư với 1(mod 3)
=> 2.4n + 16 đồng dư với 1+2=3(mod 3)
Hay A chia hết cho 3 với mọi số nguyên dương n
Bài giải
\(A=-5x^2+\frac{10}{7}x-1=-x\left(5x-\frac{10}{7}\right)-1\)
\(A\text{ có GTLN khi }-x\left(5x-\frac{10}{7}\right)\text{ có GTLN}\)
\(\text{Mà }-x\left(5x-\frac{10}{7}\right)\le0\)Dấu " = " xảy ra khi \(-x\left(5x-\frac{10}{7}\right)=0\text{ }\Rightarrow\orbr{\begin{cases}-x=0\\5x-\frac{10}{7}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\5x=\frac{10}{7}\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{2}{7}\end{cases}}\)
\(\Rightarrow\text{ }Max\text{ }A=0-1=-1\text{ khi }x\in\left\{0\text{ ; }\frac{2}{7}\right\}\)
Bài giải
\(A=-5x^2+\frac{10}{7}x-1=-x\left(5x-\frac{10}{7}\right)-1\)
\(A\text{ đạt GTLN khi }-x\left(5x-\frac{10}{7}\right)\text{ đạt GTLN}\)
\(\text{Mà }-x\left(5x-\frac{10}{7}\right)\le0\) Dấu " = " xảy ra khi \(-x\left(5x-\frac{10}{7}\right)=0\text{ }\Rightarrow\orbr{\begin{cases}-x=0\\5x-\frac{10}{7}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\5x=\frac{10}{7}\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{2}{7}\end{cases}}\)
\(\Rightarrow\text{ }Max\text{ }A=0-1=-1\text{ khi }x\in\left\{0\text{ ; }\frac{2}{7}\right\}\)
Ta có đẳng thức quen thuộc: \(\frac{xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+2xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=1\)
\(\Rightarrow\frac{\left(x+y\right)}{z}+\frac{\left(y+z\right)}{x}+\frac{\left(z+x\right)}{y}+2=\frac{\left(x+y\right)}{z}.\frac{\left(y+z\right)}{x}.\frac{\left(z+x\right)}{y}\)
Đặt \(\frac{x+y}{z}=a;\frac{y+z}{x}=b;\frac{z+x}{y}=c\) thì ta thu được giả thiết.
Vậy tồn tại các số x, y, z > 0 sao cho \(a=\frac{x+y}{z};b=\frac{y+z}{x};c=\frac{z+x}{y}\)
BĐT quy về: \(\Sigma_{cyc}\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}\le\frac{3}{2}\)
Áp dụng BĐT AM-GM: \(VT\le\frac{1}{2}\Sigma_{cyc}\left(\frac{x}{x+y}+\frac{z}{y+z}\right)=\frac{3}{2}\)
P/s: Em không chắc về cách trình bày ở chỗ phần đặt..., nhưng cách đặt trên luôn tồn tại đó!
Cách khác tự nhiên hơn!
\(a+b+c+2=abc\)
\(\Leftrightarrow\Sigma_{cyc}\left(a+1\right)\left(b+1\right)=\left(a+1\right)\left(b+1\right)\left(c+1\right)\)
\(\Leftrightarrow\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=1\)
Đặt \(\left(\frac{1}{a+1};\frac{1}{b+1};\frac{1}{c+1}\right)=\left(z;x;y\right)\text{ thì }x+y+z=1\Rightarrow a=\frac{1-z}{z}=\frac{x+y}{z}\)
Tương tự: \(b=\frac{y+z}{x};c=\frac{z+x}{y}\). Rồi giải như bài ban nãy.
Đầu tiên tiền điều kiện để phương trình bậc 2 có 2 nghiệm thuộc [0; 1] trước đi sẽ có điều kiện của a,b,c lúc đó thì giải bất như bài bất bình thường.
Ta có:
12(3a2 + 3b2 - 7a - 7b + 4) = 0
<=> (6a - 7)2 + (6b - 7)2 = 50
<=> (6a - 7, 6b - 7) = (1, 49; 49, 1; 25, 25)